Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity leaps into quantum world

17.01.2002


Particles don’t fall smoothly under gravity, they lurch.
© Pictor/Photodisc


Researchers finally measure the subtle quantum effects of fourth fundamental force.

Far from falling smoothly, objects moving under gravity do so in lurching, quantum leaps, a French experiment has revealed1. The finding confirms that gravity, like the Universe’s three other fundamental forces, can have a quantum effect.

Particles, such as electrons confined to their orbital shells around the nucleus of an atom, are restricted by the rules of quantum mechanics. To move from one position to another, they must jump to the next quantum state.



Theoretically, this rule holds for all matter under the influence of nature’s four fundamental forces: electromagnetism, weak and strong nuclear force and gravity. But gravity, especially at small scales, is a very feeble force, making it extremely difficult to measure its quantum effects.

There’s no point in looking for quantum behaviour in everyday objects. It is occurring, but the larger things become, the more subtle are the quantum effects. Even small molecules are practically immune to the weird ways of the quantum world.

Valery Nesvizhevsky and his colleagues studied ultracold neutrons (UCNs) at the Laue-Langevin Institute in Grenoble, France. These very slow-moving, uncharged particles normally team up with protons to form the nucleus of an atom. The team isolated the neutrons from the effects of the other three forces in a specially designed detector.

By following the progress of hundreds of UCNs falling from the top of the detector to the bottom, the team found that the particles exist only at certain heights. "They do not move continuously, but rather jump from one height to another as quantum theory predicts," says Nesvizhevsky.

That someone has measured quantum leaps has physicists wide-eyed. "The effects are so small it is remarkable that they can actually observe them," says Thomas Bowles, a particle physicist at Los Alamos National Laboratory in New Mexico.

Trick questions

This satisfying trick may also have profound implications for the future of physics. "Right now, we don’t have a theory of how gravity is created," says Bowles. If refined, he says, apparatus like Nesvizhevsky’s could explain how gravity behaves in the quantum world - and perhaps where it comes from.

"If you’re searching for something in fundamental physics, this is a very clean system," agrees Nesvizhevsky. It should allow researchers to pick apart some of the niggling questions about the fundamental properties of matter.

It might even be possible, suggests Bowles, to work out why Einstein’s theory of general relativity - which explains gravity and large things, such as galaxies and the Universe - doesn’t tally with quantum mechanics, the physicist’s handbook of the very small.

References

  1. Nesvizhevsky, V. V. et al. Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297 - 299, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-8.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>