Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar- B Probing the most energetic explosions in the solar system

12.09.2006
Solar flares are tremendous explosions on the surface of our Sun, releasing as much energy as a billion megatons of TNT in the form of radiation, high energy particles and magnetic fields.

The Sun’s magnetic fields are known to be an extremely important factor in producing the energy for flaring and when these magnetic fields lines clash together, dragging hot gas with them, an enormous maelstrom of energy is released. This boiling cauldron of plasma is ejected at huge speeds into the solar system and high energy particles, such as protons, can arrive at Earth within tens of minutes, to be followed a few days later by Coronal Mass Ejections, huge bubbles of gas threaded with magnetic field lines, which can cause major magnetic disturbances on Earth, sometimes with catastrophic results.

Whilst scientists understand the flaring process very well they cannot predict when one of these enormous explosions will occur. The Solar-B mission, designed and built by teams in the UK, US and Japan, will investigate the so called ‘trigger phase’ of these events.

“Solar flares are fast and furious – they can cause communication black-outs at Earth within 30 minutes of a flare erupting on the Sun’s surface. It’s imperative that we understand what triggers these events with the ultimate aim of being able to predict them with greater accuracy” said Prof. Louise Harra, the UK Solar-B project scientist based at University College London’s Mullard Space Science Laboratory [UCL/MSSL].

Solar-B will measure the movement of magnetic fields and how the Sun’s atmosphere responds to these movements. Since the Sun is constantly changing on small timescales Solar-B will be able to distinguish between steady movements and the changes that will build-up to a flare.

Probing the most energetic explosions in the solar system (2)

The spacecraft will be launched on the 22nd September 22:00 UT from the Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Centre at Uchinoura Kagoshima in southern Japan. Solar-B will be launched into a Sun-synchronous orbit allowing uninterrupted viewing.

“The Sun behaves unpredictably and will be as likely to flare during spacecraft ‘night’ when Solar-B would be behind the Earth, which is why we have chosen a special type of polar orbit that will give us continuous coverage of the Sun for more than 9 months of the year,” said Prof. Len Culhane from UCL/MSSL, Principal Investigator of the Extreme Ultraviolet Imaging Spectrometer [EIS] instrument on Solar-B.

Solar-B carries three instruments which have been designed to explore the critical trigger phase of solar flares. The UK (UCL/MSSL) led EIS instrument, an extremely lightweight 3-metre long telescope, will measure the dynamical behaviour of the Sun’s atmosphere to a higher accuracy than ever before, allowing measurement of small-scale changes occurring during the critical build-up to a flare.

“In order to make the EIS as light as possible we used the same type of carbon fibre structure, from McClaren Composites, that is used to build racing cars, although being in space will subject the material to many more demands than the average racing car” said Dr Ady James, EIS Instrument Project Manager at UCL/MSSL.

The EIS instrument is complemented by optical and X-ray telescopes and all three instruments will help solve the long-standing controversies on coronal heating and dynamics.

“Solar-B will give us an increased understanding of the mechanisms which give rise to solar magnetic variability and how this variability modulates the total solar output and creates the driving force behind space weather,” said Prof. Keith Mason, CEO of the Particle Physics and Astronomy Research Council [PPARC], the funding agency behind UK involvement in the spacecraft. Prof. Mason added, “Predicting the timing and strength of solar flares is critical if we want to mitigate the threat to orbiting spacecraft and Earth-based communication systems”.

The Rutherford Appleton Laboratory, part of the Council for the Central Laboratory of the Research Councils [CCLRC], provided the EIS calibration and observing software.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/solarb_images.asp

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>