Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists trap, map tiny magnetic vortex

11.09.2006
Cell-sized 3-D structure could hold key for next-gen hard drives

In a research first that could lead to a new generation of hard drives capable of storing thousands of movies per square inch, physicists at Rice University have decoded the three-dimensional structure of a tornado-like magnetic vortex no larger than a red blood cell.

"Understanding the nuances and functions of magnetic vortices is likely going to be a key in creating next-generation magnetic storage devices," said lead researcher Carl Rau, professor of physics and astronomy. "It's widely believed this technology will support storage densities in the range of terabits per square inch, and our group is equally excited about the potential for magnetic processors and for high-speed magnetic RAM."

The findings are available online and due to appear in an upcoming issue of Physical Review Letters.

Rau and postdoctoral researcher Jian Li used a one-of-a-kind scanning ion microscope to first create and then measure ultra-thin circular disks of soft magnetic cobalt. Their goal was to trap and image a single magnetic vortex, a cone-like structure that's created in the magnetic field at the disk when all the magnetic moments of the atoms in the disk align into uniform concentric circles. However, towards the core of the disk, the magnetic moments point more and more out of the plane of the disk, like a swirling cone. If the vortex spins in a right-handed direction, the cone points up, and if the vortex spins left, the cone points down.

In searching for the right sized disk to create the phenomenon, Rau and Li used thin films of cobalt --about the thickness of a cell membrane. They made disks with diameters as large as 38 microns – about half the width of a human hair – and as small as one micron – about the size of a bacterium. The single vortex was found on disks measuring six microns in diameter, slightly smaller than a red blood cell.

"Most people are familiar with the vortex: we see it in satellite photos of hurricanes, in whirlpools and in bathtub drains – even in Van Gogh's famous painting 'Starry Night,'" Rau said. "In nanomagnetism, however, vortices are quite hard to see experimentally. Most often, we must infer their existence from some other measurement.

"Our high-resolution spin microscope is the exception here," he said. "It allows us to map not just the overall vortex, but also the detailed location and orientation of millions of magnetic moments that combine physical forces to create the overall structure."

The instrument Rau and Li used in the study is a scanning ion microscope with polarization analysis, or SIMPA. The device consists of a highly-focused ion beam that fires gallium ions at surfaces of flat cobalt samples. The beam is first used to etch away the cobalt around each circular disk. Then, using a different setting, the gallium ions are fired at the cobalt surface in such a way as to induce the release of electrons. The electrons, which carry specific information about the magnetic state of the cobalt atoms that release them, are captured by a detector and analyzed.

Rau said better understanding of magnetic vortices could allow breakthroughs in the design of nanostructures for ultra-high-density hard disk media, non-volatile magnetic random access memory and novel magnetic logic gates that could replace volatile semiconductor logic. Compared to regular electronic devices, the magnetic devices would be faster, smaller, use less power, create less heat and they wouldn't lose information when power was turned off.

"Imagine if you never had to reboot your computer again," Rau said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>