Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists trap, map tiny magnetic vortex

11.09.2006
Cell-sized 3-D structure could hold key for next-gen hard drives

In a research first that could lead to a new generation of hard drives capable of storing thousands of movies per square inch, physicists at Rice University have decoded the three-dimensional structure of a tornado-like magnetic vortex no larger than a red blood cell.

"Understanding the nuances and functions of magnetic vortices is likely going to be a key in creating next-generation magnetic storage devices," said lead researcher Carl Rau, professor of physics and astronomy. "It's widely believed this technology will support storage densities in the range of terabits per square inch, and our group is equally excited about the potential for magnetic processors and for high-speed magnetic RAM."

The findings are available online and due to appear in an upcoming issue of Physical Review Letters.

Rau and postdoctoral researcher Jian Li used a one-of-a-kind scanning ion microscope to first create and then measure ultra-thin circular disks of soft magnetic cobalt. Their goal was to trap and image a single magnetic vortex, a cone-like structure that's created in the magnetic field at the disk when all the magnetic moments of the atoms in the disk align into uniform concentric circles. However, towards the core of the disk, the magnetic moments point more and more out of the plane of the disk, like a swirling cone. If the vortex spins in a right-handed direction, the cone points up, and if the vortex spins left, the cone points down.

In searching for the right sized disk to create the phenomenon, Rau and Li used thin films of cobalt --about the thickness of a cell membrane. They made disks with diameters as large as 38 microns – about half the width of a human hair – and as small as one micron – about the size of a bacterium. The single vortex was found on disks measuring six microns in diameter, slightly smaller than a red blood cell.

"Most people are familiar with the vortex: we see it in satellite photos of hurricanes, in whirlpools and in bathtub drains – even in Van Gogh's famous painting 'Starry Night,'" Rau said. "In nanomagnetism, however, vortices are quite hard to see experimentally. Most often, we must infer their existence from some other measurement.

"Our high-resolution spin microscope is the exception here," he said. "It allows us to map not just the overall vortex, but also the detailed location and orientation of millions of magnetic moments that combine physical forces to create the overall structure."

The instrument Rau and Li used in the study is a scanning ion microscope with polarization analysis, or SIMPA. The device consists of a highly-focused ion beam that fires gallium ions at surfaces of flat cobalt samples. The beam is first used to etch away the cobalt around each circular disk. Then, using a different setting, the gallium ions are fired at the cobalt surface in such a way as to induce the release of electrons. The electrons, which carry specific information about the magnetic state of the cobalt atoms that release them, are captured by a detector and analyzed.

Rau said better understanding of magnetic vortices could allow breakthroughs in the design of nanostructures for ultra-high-density hard disk media, non-volatile magnetic random access memory and novel magnetic logic gates that could replace volatile semiconductor logic. Compared to regular electronic devices, the magnetic devices would be faster, smaller, use less power, create less heat and they wouldn't lose information when power was turned off.

"Imagine if you never had to reboot your computer again," Rau said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>