Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists trap, map tiny magnetic vortex

Cell-sized 3-D structure could hold key for next-gen hard drives

In a research first that could lead to a new generation of hard drives capable of storing thousands of movies per square inch, physicists at Rice University have decoded the three-dimensional structure of a tornado-like magnetic vortex no larger than a red blood cell.

"Understanding the nuances and functions of magnetic vortices is likely going to be a key in creating next-generation magnetic storage devices," said lead researcher Carl Rau, professor of physics and astronomy. "It's widely believed this technology will support storage densities in the range of terabits per square inch, and our group is equally excited about the potential for magnetic processors and for high-speed magnetic RAM."

The findings are available online and due to appear in an upcoming issue of Physical Review Letters.

Rau and postdoctoral researcher Jian Li used a one-of-a-kind scanning ion microscope to first create and then measure ultra-thin circular disks of soft magnetic cobalt. Their goal was to trap and image a single magnetic vortex, a cone-like structure that's created in the magnetic field at the disk when all the magnetic moments of the atoms in the disk align into uniform concentric circles. However, towards the core of the disk, the magnetic moments point more and more out of the plane of the disk, like a swirling cone. If the vortex spins in a right-handed direction, the cone points up, and if the vortex spins left, the cone points down.

In searching for the right sized disk to create the phenomenon, Rau and Li used thin films of cobalt --about the thickness of a cell membrane. They made disks with diameters as large as 38 microns – about half the width of a human hair – and as small as one micron – about the size of a bacterium. The single vortex was found on disks measuring six microns in diameter, slightly smaller than a red blood cell.

"Most people are familiar with the vortex: we see it in satellite photos of hurricanes, in whirlpools and in bathtub drains – even in Van Gogh's famous painting 'Starry Night,'" Rau said. "In nanomagnetism, however, vortices are quite hard to see experimentally. Most often, we must infer their existence from some other measurement.

"Our high-resolution spin microscope is the exception here," he said. "It allows us to map not just the overall vortex, but also the detailed location and orientation of millions of magnetic moments that combine physical forces to create the overall structure."

The instrument Rau and Li used in the study is a scanning ion microscope with polarization analysis, or SIMPA. The device consists of a highly-focused ion beam that fires gallium ions at surfaces of flat cobalt samples. The beam is first used to etch away the cobalt around each circular disk. Then, using a different setting, the gallium ions are fired at the cobalt surface in such a way as to induce the release of electrons. The electrons, which carry specific information about the magnetic state of the cobalt atoms that release them, are captured by a detector and analyzed.

Rau said better understanding of magnetic vortices could allow breakthroughs in the design of nanostructures for ultra-high-density hard disk media, non-volatile magnetic random access memory and novel magnetic logic gates that could replace volatile semiconductor logic. Compared to regular electronic devices, the magnetic devices would be faster, smaller, use less power, create less heat and they wouldn't lose information when power was turned off.

"Imagine if you never had to reboot your computer again," Rau said.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>