Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Planet or failed star? Hubble photographs one of the smallest stellar companions ever seen

Astronomers using the NASA/ESA Hubble Space Telescope have photographed one of the smallest objects ever seen around a normal star beyond our Sun. Weighing in at 12 times the mass of Jupiter, the object is small enough to be a planet. The conundrum is that it’s also large enough to be a brown dwarf, a failed star.

The Hubble observation of the diminutive companion to the low-mass red dwarf star CHRX 73 is a dramatic reminder that astronomers do not have a consensus in deciding which objects orbiting other stars are truly planets - even though they have at last agreed on how they will apply the definition of "planet" to objects inside our Solar System.

This NASA/ESA Hubble Space Telescope image shows one of the smallest objects ever seen around a normal star. Astronomers believe the object is a brown dwarf because it is 12 times more massive than Jupiter. The brown dwarf candidate, called CHXR 73 B, is the bright spot at lower right. It orbits a red dwarf star, dubbed CHXR 73, which is a third less massive than the Sun. At 2 million years old, the star is very young when compared with our middle-aged 4.6-billion-year-old Sun. CHXR 73 B orbits 19.5 billion miles from its star, or roughly 200 times farther than Earth is from the Sun. The star looks significantly larger than CHXR 73 B because it is much brighter than its companion. CHXR 73 B is 1/100 as bright as its star. The cross-shaped diffraction spikes around the star are artifacts produced within the telescope's optics. The star is 500 light-years away from Earth. Hubble’s Advanced Camera for Surveys snapped the image in near-infrared light on Feb. 10 and 15, 2005. The colour used in the image does not reflect the object’s true colour. Credit: NASA, ESA, and K. Luhman (Penn State University, USA)

Kevin Luhman of Penn State University, USA, leader of the international team that found the object, called CHRX 73 B, is casting his vote for a brown dwarf. "New, more sensitive telescopes are finding smaller and smaller objects of planetary-mass size," said Luhman. "These discoveries have prompted astronomers to ask the question, are planetary-mass companions always planets?"

Some astronomers suggest that an extrasolar object's mass determines whether it is a planet. Luhman and others advocate that an object is only a planet if it formed from the disk of gas and dust that commonly encircles a newborn star. Our Solar System planets formed 4.6 billion years ago out of a dust disk around our Sun.

Brown dwarfs, by contrast, form just like stars: from the gravitational collapse of large, diffuse clouds of hydrogen gas. Unlike stars, brown dwarfs do not have quite enough mass to ignite hydrogen fusion reactions in their cores, which power stars such as our Sun.

CHXR 73 B is 19.5 billion miles from its red dwarf sun. That's roughly 200 times farther than Earth is from our Sun. At 2 million years old, the star is very young when compared with our middle-aged 4.6-billion-year-old Sun.

"The object is so far away from its star that it is unlikely to have formed in a circumstellar disk," Luhman explained. Disks around low-mass stars are about 5 to 10 billion miles in diameter. There isn't enough material at that distance from the red dwarf to create a planet. Theoretical models show that giant planets like Jupiter form no more than about 3 billion miles from their stars.

Hubble’s Advanced Camera for Surveys discovered the object while conducting a survey of free-floating brown dwarfs. Astronomers have found hundreds of brown dwarfs in our galaxy since the first brown dwarfs were spied about a decade ago. Most of them are floating through space and not orbiting stars.

“The study of substellar objects in orbit around a star allows us to determine the age, and over time also the mass of the companion. Such studies help us to improve out understanding of the formation and inner structure of brown dwarfs and planets," says Wolfgang Brandner of the Max-Planck-Institute for Astronomy in Heidelberg, Germany.

One way to further settle the uncertainty would be if a disk of dust could be observed around CHRX 73’s companion. Like stars, brown dwarfs have circumstellar disks, too. They would be no more than about 4 billion kilometres in diameter.

NASA’s Spitzer Space Telescope has detected disks around several free-floating brown dwarfs. But CHRX 73 B is too close to its star for Spitzer to detect the disk. So astronomers will have to wait for the launch of the NASA/ESA/CSA James Webb Space Telescope in 2013 to determine if this companion has a disk. The Webb telescope will combine Hubble’s sharpness, which is needed for detecting close companions, and Spitzer’s infrared sensitivity, which is necessary for seeing cool, dusty disks.

The team’s result will appear in the Sept. 20 2006 issue of the Astrophysical Journal.

Lars Christensen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>