Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding physics, nanohandles, sunscreen for algae and classical quantum weirdness

07.09.2006
Quantum Leap in Protein Folding Calculations
F. Pederiva et al.
Physical Review Letters (forthcoming article, available to journalists on request)

Applying techniques derived from classical and quantum physics calculations may radically reduce the time it takes to simulate the way that proteins fold. It's vital to understand the shapes that proteins take on as they fold up because the shapes determine how they function, both in keeping cells running and in leading to various diseases. Rather than calculating the motions of a protein molecule step by step, as most simulations do, a team of Italian and French physicists studied the evolution of a molecule using variational principles. The technique allowed the physicists to evaluate all the possible paths that the molecule's parts would follow and then pick out the most likely one. As a result, they expect to streamline protein folding calculations from trillions of steps to hundreds. The improvement is significant because conventional protein folding simulations that currently require supercomputers or large PC farms could instead be solved with individual desktop PCs running variational principle calculations. The researchers explain that the new application of the old physics method is faster because it allows them to spend less time calculating motions of molecules stuck in quasi-stable intermediate steps along the folding process. The intermediate steps account for vast amounts of wasted computation time in traditional, step-by-step simulations.

Getting a Grip on Nanotubes

Young-Su Lee and Nicola Mazari
Physical Review Letters (forthcoming article, available to journalists on request)

Carbon nanotubes can be hard to manipulate, which isn't surprising considering that they are billionths of a meter in diameter and usually only millionths of a meter long. One solution is to chemically attach molecular handles to their sides to make them easier to move around. Unfortunately, the handles add extra bonds to nanotubes, often distorting them and impairing the electrical and mechanical characteristics that make them desirable in many applications. A pair of physicists at MIT have found a class of molecules that attach to nanotubes without damaging them. Instead of simply grabbing onto the nanotubes, the molecules latch onto the tubes and break some bonds in the nanotube walls. As a result, the sum total of bonds is the same before and after the handle is attached, keeping the nanotube's original characteristics relatively intact. The researchers explain that the handles should make it easier to assemble novel nantube-based optical and chemical sensors.

Quantum Behavior in a Classical World

Yves Couder and Emmanuel Fort
Physical Review Letters (forthcoming article, available to journalists on request)

Wave/particle duality is a quantum phenomenon usually confined to photons, electrons, protons, and other ultra-tiny objects. Quantum mechanics shows that such objects sometimes behave like particles, sometimes behave like waves, and sometimes like a little of both. All objects exhibit wave/particle duality to some extent, but the larger the object the harder it is to observe. Even individual molecules are often too large to show the quantum mechanical behavior. Now physicists at the Université de Paris have demonstrated wave/particle duality with a droplet made of trillions of molecules. The experiment involved an oil droplet bouncing on the surface of an agitated layer of oil. The droplet created waves on the surface, which in turn affected the motion of the droplet. As a result, the droplet and waves formed a single entity that consisted of a hybrid of wave-like and particle-like characteristics. When the wave/droplet bounced its way through a slit, the waves allowed it to interfere with its own motion, much as a single photon can interfere with itself via quantum mechanics. Although the wave/droplet is clearly a denizen of the classical world, the experiment provides a clever analogue of quantum weirdness at a scale that is much easier to study and visualize than is typical of many true quantum experiments.

Photonic Crystal Sunscreen for Sea Scum

R. Quintero-Torres et al.
Physical Review E (forthcoming article, available to journalists on request)

Physicists have added algae to the list of plants and animals that rely on photonic crystals to manipulate light. Photonic crystals are microscopic patterns of material that can reflect or guide light without relying on pigments and other materials we normally associate with colorful surfaces. Models of the optical properties of holococcolithophore algae, which wear plates made of patterned calcium carbonate, showed that the algae are particularly good at scattering ultraviolet (UV) light. The team of Mexican and Spanish physicists who analyzed the structures speculate that the patterning may serve as a kind of sunscreen, allowing the algae to live high in the water column without the threat of damage from UV rays, while giving them improved access to the light wavelengths that drive photosynthesis. The photonic plates join peacock feathers, beetle carapaces, and butterfly wings in the growing catalog of naturally occurring structures that control light using photonic crystals.

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>