Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diode laser could be vital for safeguarding aircraft

05.09.2006
Terrorists can strike anywhere, at any time, and aircraft, both military and civilian, are targets for heat-seeking missiles, one of many tactics in use by groups hostile to the United States.

Despite their name, heat-seeking missiles actually seek a characteristic infrared light given off by hot objects. Though invisible to the human eye, tiny detectors inside the missiles can detect this infrared light and use it for guidance.

To ensure the safety of aircraft, infrared countermeasure (IRCM) systems are used to confuse or blind the detectors. These systems require a high-power light source that can emit light at the correct wavelength. While various existing light sources may be able to succeed in disrupting the detectors, most are based on technology that is both bulky and expensive. Therefore, only a few military aircraft are now protected by IRCM systems. Developing a compact and inexpensive infrared light source will allow for widespread use of IRCMs, but it has proven to be a significant technical challenge.

A new type of diode laser, called the quantum cascade laser (QCL), may eventually change this situation. Diode lasers are inherently compact and suitable for mass-production, which has led to their widespread and low-cost use in everyday products, including CD and DVD players.

The Center for Quantum Devices (CQD) at Northwestern University, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical and Computer Engineering, has recently made great strides in laser design, material growth and laser fabrication that have greatly increased the output power and power conversion efficiency of QCLs. The center has now demonstrated individual lasers emitting at wavelengths of 3.8 and 4 microns, capable of up to 1.6 watts of continuous output power at cryogenic temperatures. These lasers have a threshold current density of less than 400 A/cm2 and a power conversion efficiency of 10 percent.

With further development, the researchers at CQD hope to use laser arrays to achieve a continuous output of 10 watts or more. At this wavelength and power level, the lasers could be extremely useful for aircraft protection.

Another significant breakthrough is the ability to operate these 3.8 and 4 micron lasers at room temperature. Room temperature continuous-wave operation has been demonstrated from the same devices with up to 150 milliwatts of output power. This room temperature development makes the lasers attractive for other applications, including early detection of toxic industrial chemicals, explosives and chemical warfare agents.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>