Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1 swan song: valuable data until final moments

05.09.2006
Right up to its final orbits, SMART-1 continued delivering valuable data, extending the mission's legacy as a technology and scientific success. Scientists and engineers met today at ESOC to review mission achievements including final AMIE camera images.
At a press event held today at ESA's Spacecraft Operations Centre (ESOC), SMART-1 engineers, operations experts and scientists are presenting data and preliminary results obtained by the spacecraft prior to its impact on the Moon at 07:42 CEST, 3 September 2006.

Perhaps the most sentimental image sequence was taken by AMIE just four days before impact, on 29 August at 21:00 CEST (19:00 UT), when the camera was pointed back towards the Earth to capture, in the best tradition of many previous lunar missions, a view of our home planet. The sequence of images is centred over Brazil at approximately 44.9º West and 19.2º South (North is to the left). The Kourou area in French Guiana, from where SMART-1 was launched in 2003, is also visible.

Remarkably, this movie sequence shows the Moon passing in front of the Earth, beautifully underlining the close gravitational relationship between the Earth and its natural satellite.

Final orbits offered new imaging opportunities

During SMART-1's final orbits on 1 and 2 September, the spacecraft was passing at extremely low altitude over the Moon's surface, which was in darkness, prompting scientists to take advantage of this unique observational situation by pointing the AMIE camera laterally toward the Moon's limb (horizon). The camera gathered images of the thin dust envelope surrounding the Moon, which will be analysed by scientists in the future.

As a result, the best final images from AMIE were taken on 2 September; seven of these were posted on the ESA Portal on 3 September and, together with additional images from the set, these have been combined into a pair of movie sequences (click on images at right).

The images were taken between 15:19-17:34 CEST (17:19-19:34 UT). The sequences show the surface of the Moon passing under SMART-1 during the final orbits and show what a passenger on board the spacecraft would have seen shortly before impact and destruction.

AMIE mosaic of geologically important southern region

Other SMART-1 results presented today include a mosaic of AMIE nadir (vertical pointing) images showing a 400-km-long area inside the Moon South Pole-Aitken Basin (SPA), the largest and oldest known impact crater basin in the solar system and the deepest depression in the Moon.

The basin is 2600 km in diameter and extends from the South Pole to the Aitken Crater, located at 173.4º East and 16.8º South.

AMIE was able to image the area under ideal illumination conditions, which will afford scientists an opportunity to compare AMIE images with existing data of the same area gathered by previous lunar missions.

"These images can help us understand the surface morphology, formation and evolution of the South Pole-Aitken Basin. This type of nadir observation provides the geological context of the area, and will help further extend our knowledge of the Moon's geology," said Jean-Luc Josset, AMIE Principal Investigator, SPACE-X (Space Exploration Institute), Neuchatel, Switzerland.

In fact, scientists intend to compare the AMIE visible images of the South Pole-Aitken Basin morphology to those previously captured by the camera using the 'push-broom', three-colour filter mode. The push-broom images give information on the Moon's surface composition and mineralogy, and a comparison between the two sets is expected to increase understanding of the Moon's overall surface composition.

Illumination conditions at North Pole

Another AMIE mosaic presented today shows the Moon's North polar area and was taken during first phase of the SMART-1 mission in 2005.

This mosaic is valuable as it shows illumination conditions at the region. It is important to understand global illumination conditions, as this will help in planning the location of future landing sites and, later, possible bases on the Moon.

Successful AMIE performance

The image sets shown today illustrate the successful technology and tremendous results of the AMIE (Advanced Moon micro-Imager Experiment) camera throughout SMART-1's 36-month mission.

Originally designed to capture just four images per orbit, AMIE exceeded all expectations and actually averaged 100 images per rotation, generating a final library of some 20 000 images.

Following the early decision to redesign the science orbit and lower the apolune (point of highest approach) from 10 000 to 3000 km over the lunar North pole, AMIE was able to adjust to the large number of imaging commands and complex operations that were introduced.

"This decision allowed AMIE not only to take sharp images of the South Pole as planned, but also to study the northern hemisphere from a much shorter range than initially foreseen," said Josset. "We now have an image library that will keep scientists and researchers busy for the next months and years," he added.

Additional lunar composition findings

Scientists used today's press event to highlight findings from spectroscopic studies conducted by SMART-1's D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer) instrument, and show new surface composition data of selected regions.

The volume of data generated during the mission is expected to keep scientists busy for some time. Among the remarkable results already determined was the first-ever remote detection of all the main elements which make up lunar minerals. This includes, for the first time, calcium.

"SMART-1 data have opened a new era in remote sensing investigation of Earth's nearest neighbour. A great deal is still to be learned from analysis of these data, while we already look forward to flying instruments similar to D-CIXS on the upcoming Chandrayan lunar probe (India)," said Manuel Grande, D-CIXS Principal Investigator, University of Wales, Aberystwyth, UK.

Ground observations at impact

Furthermore, scientists worldwide are analysing data gathered from the ground observation campaign including the impact flash to eventually obtain fresh information on impact physics, lunar surface science and spacecraft behaviour during impact, all expected to be useful for future lunar missions.

SMART-1 legacy

"By proving solar-propulsion and employing other technology including innovative ground control systems while gathering fantastic new data, SMART-1 has left a legacy of technology and scientific excellence," said Bernard Foing, ESA's SMART-1 Mission Scientist.

He added: "It will survive by continuing to contribute to our collective knowledge of Earth's nearest neighbour for many years, and it is only fitting that SMART-1 has found its final resting place on the Moon."

Bernard H. Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEMC378ZMRE_0.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>