Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet hunters pledge Eddington support

15.01.2002


Stellar silhouette: artist’s impression of a giant planet passing it’s parent star. Eddington could spot a shadow 10 times smaller.
© Lynette R. Cook


Belt tightening cloud could have silver-lining for Europe’s planet hunters

European planet hunters are rallying round a beleaguered effort to launch the first spacecraft that might detect Earth-like planets beyond our own Solar System. Meeting in London last week they agreed that the low-cost, low-risk mission has a lot to offer.

The planet-spotting mission Eddington has been approved by the European Space Agency (ESA), but is currently on hold awaiting funds; unless they materialize it could be scrapped by the end of the year. "Everything is up in the air at the moment," says Ian Roxburgh, an astronomer at the University of London and joint-leader of the mission1.



The spacecraft, named after the 1930s British astronomer Arthur Eddington, will hover in an orbit between the Earth and the Sun for four years. It will train light sensors on a cluster of 500,000 nearby stars, hoping to detect the silhouettes of Earth-sized planets passing in front of them.

Star turn

This technique and others have spotted over 70 planets in our Galaxy outside our own Solar System. The planets seen so far have all been huge - at least as big as Jupiter. But interference from the atmosphere and the rotation of the Earth have made it impossible to see a star clearly enough for long enough to infer the presence of smaller, Earth-sized planets.

Astronomers hope that the Eddington mission will detect planets as small as Mars. By measuring how fast a planet is moving, it will also estimate how far away from its star a planet is orbiting, and therefore whether it is capable of supporting life. "We can calculate whether the planet lies in the habitable zone - neither too hot nor too cold for life," says Roxburgh.

Eddington’s camera will also study stars’ innards. By monitoring fluctuating light emissions, it will discern ripples on the surface on stars, which are evidence of inner shock waves. "The (wave) frequency we observe at the surface of stars is a direct probe of what is going on within," says Fabio Favata, Eddington’s mission scientist at ESA.

This technique - called astroseismology - can only be performed in the stillness of space. It has never been done before beyond our own Sun. "These studies will help us understand the evolution of stars and galaxies, and improve our methods for measuring stellar ages and distances," says Roxburgh.

Competition time

Until recently, says Alan Penny, joint-leader of Eddington at the Rutherford Appleton Laboratory near Oxford, UK, the mission seemed to be doomed after ESA cut its budget for space science missions1. And last month NASA gave funding to Kepler - an all-American mission almost identical to Eddington - to look for Earth-like planets in the same region of space, only with a larger telescope.

Now all-round belt-tightening could act to Eddington’s advantage. "Eddington was on thin ice, but now everyone is on thin ice," Penny says. Sean O’Keefe, NASA’s new administrator, who was appointed in November, is cutting spending; and several ESA missions are falling behind deadline. Eddington is cheap and reliable and so "could rapidly fill the gap if the spending profile moves", suggests Penny.

William Borucki of the NASA Ames Research Center in Moffat Field, California, is confident that the Kepler mission that he is leading will be the first to spot Earth-sized planets. "We’ve every reason to think we’re going to fly," he says.

But Borucki hopes Eddington makes it too. "I don’t think of it as a competition," he says. "It’s an important mission and will add to our science."

References

  1. Goodman, S. Europe puts the squeeze on space projects. Nature, 414, 383, (2001).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-2.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>