Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet hunters pledge Eddington support

15.01.2002


Stellar silhouette: artist’s impression of a giant planet passing it’s parent star. Eddington could spot a shadow 10 times smaller.
© Lynette R. Cook


Belt tightening cloud could have silver-lining for Europe’s planet hunters

European planet hunters are rallying round a beleaguered effort to launch the first spacecraft that might detect Earth-like planets beyond our own Solar System. Meeting in London last week they agreed that the low-cost, low-risk mission has a lot to offer.

The planet-spotting mission Eddington has been approved by the European Space Agency (ESA), but is currently on hold awaiting funds; unless they materialize it could be scrapped by the end of the year. "Everything is up in the air at the moment," says Ian Roxburgh, an astronomer at the University of London and joint-leader of the mission1.



The spacecraft, named after the 1930s British astronomer Arthur Eddington, will hover in an orbit between the Earth and the Sun for four years. It will train light sensors on a cluster of 500,000 nearby stars, hoping to detect the silhouettes of Earth-sized planets passing in front of them.

Star turn

This technique and others have spotted over 70 planets in our Galaxy outside our own Solar System. The planets seen so far have all been huge - at least as big as Jupiter. But interference from the atmosphere and the rotation of the Earth have made it impossible to see a star clearly enough for long enough to infer the presence of smaller, Earth-sized planets.

Astronomers hope that the Eddington mission will detect planets as small as Mars. By measuring how fast a planet is moving, it will also estimate how far away from its star a planet is orbiting, and therefore whether it is capable of supporting life. "We can calculate whether the planet lies in the habitable zone - neither too hot nor too cold for life," says Roxburgh.

Eddington’s camera will also study stars’ innards. By monitoring fluctuating light emissions, it will discern ripples on the surface on stars, which are evidence of inner shock waves. "The (wave) frequency we observe at the surface of stars is a direct probe of what is going on within," says Fabio Favata, Eddington’s mission scientist at ESA.

This technique - called astroseismology - can only be performed in the stillness of space. It has never been done before beyond our own Sun. "These studies will help us understand the evolution of stars and galaxies, and improve our methods for measuring stellar ages and distances," says Roxburgh.

Competition time

Until recently, says Alan Penny, joint-leader of Eddington at the Rutherford Appleton Laboratory near Oxford, UK, the mission seemed to be doomed after ESA cut its budget for space science missions1. And last month NASA gave funding to Kepler - an all-American mission almost identical to Eddington - to look for Earth-like planets in the same region of space, only with a larger telescope.

Now all-round belt-tightening could act to Eddington’s advantage. "Eddington was on thin ice, but now everyone is on thin ice," Penny says. Sean O’Keefe, NASA’s new administrator, who was appointed in November, is cutting spending; and several ESA missions are falling behind deadline. Eddington is cheap and reliable and so "could rapidly fill the gap if the spending profile moves", suggests Penny.

William Borucki of the NASA Ames Research Center in Moffat Field, California, is confident that the Kepler mission that he is leading will be the first to spot Earth-sized planets. "We’ve every reason to think we’re going to fly," he says.

But Borucki hopes Eddington makes it too. "I don’t think of it as a competition," he says. "It’s an important mission and will add to our science."

References

  1. Goodman, S. Europe puts the squeeze on space projects. Nature, 414, 383, (2001).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-2.html

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>