Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet hunters pledge Eddington support

15.01.2002


Stellar silhouette: artist’s impression of a giant planet passing it’s parent star. Eddington could spot a shadow 10 times smaller.
© Lynette R. Cook


Belt tightening cloud could have silver-lining for Europe’s planet hunters

European planet hunters are rallying round a beleaguered effort to launch the first spacecraft that might detect Earth-like planets beyond our own Solar System. Meeting in London last week they agreed that the low-cost, low-risk mission has a lot to offer.

The planet-spotting mission Eddington has been approved by the European Space Agency (ESA), but is currently on hold awaiting funds; unless they materialize it could be scrapped by the end of the year. "Everything is up in the air at the moment," says Ian Roxburgh, an astronomer at the University of London and joint-leader of the mission1.



The spacecraft, named after the 1930s British astronomer Arthur Eddington, will hover in an orbit between the Earth and the Sun for four years. It will train light sensors on a cluster of 500,000 nearby stars, hoping to detect the silhouettes of Earth-sized planets passing in front of them.

Star turn

This technique and others have spotted over 70 planets in our Galaxy outside our own Solar System. The planets seen so far have all been huge - at least as big as Jupiter. But interference from the atmosphere and the rotation of the Earth have made it impossible to see a star clearly enough for long enough to infer the presence of smaller, Earth-sized planets.

Astronomers hope that the Eddington mission will detect planets as small as Mars. By measuring how fast a planet is moving, it will also estimate how far away from its star a planet is orbiting, and therefore whether it is capable of supporting life. "We can calculate whether the planet lies in the habitable zone - neither too hot nor too cold for life," says Roxburgh.

Eddington’s camera will also study stars’ innards. By monitoring fluctuating light emissions, it will discern ripples on the surface on stars, which are evidence of inner shock waves. "The (wave) frequency we observe at the surface of stars is a direct probe of what is going on within," says Fabio Favata, Eddington’s mission scientist at ESA.

This technique - called astroseismology - can only be performed in the stillness of space. It has never been done before beyond our own Sun. "These studies will help us understand the evolution of stars and galaxies, and improve our methods for measuring stellar ages and distances," says Roxburgh.

Competition time

Until recently, says Alan Penny, joint-leader of Eddington at the Rutherford Appleton Laboratory near Oxford, UK, the mission seemed to be doomed after ESA cut its budget for space science missions1. And last month NASA gave funding to Kepler - an all-American mission almost identical to Eddington - to look for Earth-like planets in the same region of space, only with a larger telescope.

Now all-round belt-tightening could act to Eddington’s advantage. "Eddington was on thin ice, but now everyone is on thin ice," Penny says. Sean O’Keefe, NASA’s new administrator, who was appointed in November, is cutting spending; and several ESA missions are falling behind deadline. Eddington is cheap and reliable and so "could rapidly fill the gap if the spending profile moves", suggests Penny.

William Borucki of the NASA Ames Research Center in Moffat Field, California, is confident that the Kepler mission that he is leading will be the first to spot Earth-sized planets. "We’ve every reason to think we’re going to fly," he says.

But Borucki hopes Eddington makes it too. "I don’t think of it as a competition," he says. "It’s an important mission and will add to our science."

References

  1. Goodman, S. Europe puts the squeeze on space projects. Nature, 414, 383, (2001).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-2.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>