Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-lasting but dim brethren of cosmic flashes

Unusual Gamma-Ray Burst Studied in Detail

Astronomers, using ESO’s Very Large Telescope, have for the first time made the link between an X-ray flash and a supernova. Such flashes are the little siblings of gamma-ray bursts (GRB) and this discovery suggests the existence of a population of events less luminous than ‘classical’ GRBs, but possibly much more numerous.

“This extends the GRB–supernova connection to X-ray flashes and fainter supernovae, implying a common origin”, said Elena Pian (INAF, Italy), lead-author of one of the four papers related to this event appearing in the 31 August issue of Nature.

The event began on 18 February 2006: the NASA/PPARC/ASI Swift satellite detected an unusual gamma-ray burst, about 25 times closer and 100 times longer than the typical gamma-ray burst. GRBs release in a few seconds more energy than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are thus the most powerful events since the Big Bang known in the Universe.

The explosion, called GRB 060218 after the date it was discovered, originated in a star-forming galaxy about 440 million light-years away toward the constellation Aries. This is the second-closest gamma-ray burst ever detected. Moreover, the burst of gamma rays lasted for nearly 2,000 seconds; most bursts last a few milliseconds to tens of seconds. The explosion was surprisingly dim, however.

A team of astronomers has found hints of a budding supernova. Using, among others, ESO's Very Large Telescope (VLT) in Chile, the scientists have watched the afterglow of this burst grow brighter in optical light. This brightening, along with other telltale spectral characteristics in the light, strongly suggests that a supernova was unfolding. Within days, the supernova became apparent.

The observations with the VLT started on 21 February 2006, just three days after the discovery. Spectroscopy was then performed nearly daily for seventeen days, providing the astronomers with a large data set to document this new class of events.

The group led by Elena Pian indeed confirmed that the event was tied to a supernova called SN 2006aj a few days later. Remarkable details about the chemical composition of the star debris continue to be analysed.

The newly discovered supernova is dimmer than hypernovae associated with normal long gamma-ray bursts by about a factor of two, but it is still a factor of 2–3 more luminous than regular core-collapse supernovae.

All together, these facts point to a substantial diversity between supernovae associated with GRBs and supernovae associated with X-ray flashes. This diversity may be related to the masses of the exploding stars.

Whereas gamma-ray bursts probably mark the birth of a black hole, X-ray flashes appear to signal the type of star explosion that leaves behind a neutron star. Based on the VLT data, a team led by Paolo Mazzali of the Max Planck Institute for Astrophysics in Garching, Germany, postulate that the 18 February event might have led to a highly magnetic type of neutron star called a magnetar.

Mazzali and his team find indeed that the star that exploded had an initial mass of ‘only’ 20 times the mass of the Sun. This is smaller, by about a factor two at least, than those estimated for the typical GRB–supernovae.

“The properties of GRB 060218 suggest the existence of a population of events less luminous than ‘classical’ GRBs, but possibly much more numerous”, said Mazzali. “Indeed, these events may be the most abundant form of X- or gamma-ray bursts in the Universe, but instrumental limits allow us to detect them only locally”.

The astronomers find that the number of such events could be about 100 times more numerous than typical gamma-ray bursts.

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>