Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AKARI’s view on birth and death of stars

29.08.2006
AKARI, the Japan Aerospace Exploration Agency (JAXA) infrared astronomical satellite with ESA participation, is continuing its survey of the sky and its mapping of our cosmos in infrared light. New exciting images recently taken by AKARI depict scenes from the birth and death of stars.

AKARI's Infrared Camera (IRC) imaged the reflection nebula IC 1396 in the constellation Cepheus (a reflection nebula is a cloud of dust which reflects the light of nearby stars). IC 1396 is a bright star-forming region located about 3000 light years from our Solar System, in a region where very massive stars – several tens of times as massive as our Sun - are presently being born. Massive young stars in the central region of the image have swept out the gas and dust to the periphery of the nebula, creating a hollow shell-like structure.


Comparison of visible and infrared images of reflection nebula IC1396

A new generation of stars is now taking place within the compressed gas in these outer shell structures. With this high-resolution and high-quality image of IC 1396, AKARI has revealed for the first time the detailed distribution of the gas and dust swept out over the entire nebula.

A comparison between a visible image of IC 1396 and AKARI's view of the same area shows that stars being born in regions that appear dark in visible light (left), do however appear bright if observed in infrared light (right).

The gas that has been swept out creates the bright filament-like structures seen in infrared in the surrounding regions. The dust in the gas is heated by the intense light coming from both the massive star at the centre of the nebula and the newly born stars in the dense gas itself, and emits infrared light.

The bright clump seen on the slightly off-centre right-hand side is known as the 'Elephant Trunk Nebula', a star forming region too. It appears as a dark nebula in the visible light (left image), but it is very bright in the infrared. It is a clump of dense gas that was not originally blown away because of its very high density.

Many recently born stars that were previously unknown are now expected to be detected thanks to AKARI's new image, while the detailed analysis of these data will reveal the story of the star formation in this area.

AKARI's Far-Infrared Surveyor (FIS) instrument imaged the red giant 'U Hydrae', a star located at about 500 light years from our Sun. AKARI’s observations have revealed very extended clouds of dust surrounding this object.

Stars with masses close to that of our Sun will expand during the later stages of their life becoming so-called 'red-giant' stars. During the final phase of their life such stars often eject gas from their surface into interstellar space - dust is formed in the ejected gas, and this mixture of gas and dust expands and escapes from the star.

AKARI's superior quality and high-resolution imaging allowed the clear detection of a shell-like dust cloud surrounding U Hydrae at a distance of about 0.3 light years from the central star, implying that a short and violent ejection of mass took place in the star about 10 000 years ago.

Alberto Salama | alfa
Further information:
http://www.esa.int/esaSC/SEM4TU5LARE_index_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>