Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare high-altitude clouds found on Mars

29.08.2006
Planetary scientists have discovered the highest clouds above any planetary surface. They found them above Mars using the SPICAM instrument on board ESA's Mars Express spacecraft. The results are a new piece in the puzzle of how the Martian atmosphere works.

Until now, scientists had been aware only of the clouds that hug the Martian surface and lower reaches of the atmosphere. Thanks to data from the SPICAM Ultraviolet and Infrared Atmospheric Spectrometer onboard Mars Express, a fleeting layer of clouds have been discovered at an altitude between 80 and 100 kilometres. The clouds are most likely composed of carbon dioxide.

SPICAM made the discovery by observing distant stars just before they disappeared behind Mars. By looking at the effects on the starlight as it travelled through the Martian atmosphere, SPICAM built up a picture of the molecules at different altitudes. Each sweep through the atmosphere is called a profile.

The first hints of the new cloud layer came when certain profiles showed that the star dimmed noticeably when it was behind the 90–100 kilometre high atmospheric layer. Although this happened in only one percent of the profiles, by the time the team had collected 600 profiles, they were confident that the effect was real.

"If you wanted to see these clouds from the surface of Mars, you would probably have to wait until after sunset" says Franck Montmessin, a SPICAM scientist with Service d'Aeronomie du CNRS, Verrières-le-Buisson, France, and lead author of the results. This is because the clouds are very faint and can only be seen reflecting sunlight against the darkness of the night sky. In that respect, they look similar to the mesospheric clouds, also known as noctilucent clouds, on Earth. These occur at 80 kilometres altitude above our planet, where the density of the atmosphere is similar to that of Mars’ at 35 kilometres. The newly discovered Martian clouds therefore occur in a much more rarefied atmospheric location.

At 90–100 kilometres above the Martian surface, the temperature is just –193° Celsius. This means that the clouds are unlikely to be made of water. "We observe the clouds in super-cold conditions where the main atmospheric component CO2 (carbon dioxide), cools below its condensation point. From that we infer that they are made of carbon dioxide," says Montmessin.

But how do these clouds form? SPICAM has revealed the answer by finding a previously unknown population of minuscule dust grains above 60 kilometres in the Martian atmosphere. The grains are just one hundred nanometres across (a nanometre is one thousand-millionth of a metre).

They are likely to be the 'nucleation centres' around which crystals of carbon dioxide form to make clouds. They are either microscopic chippings from the rocks on the surface on Mars that have been blown to extreme altitudes by the winds, or they are the debris from meteors that have burnt up in the Martian atmosphere.

The new high-altitude cloud layer has implications for landing on Mars as it suggests the upper layers of Mars' atmosphere can be denser than previously thought. This will be an important piece of information for future missions, when using friction in the outer atmosphere to slow down spacecraft (in a technique called 'aerobraking'), either for landing or going into orbit around the planet.

Agustin Chicarro | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMC4JZ7QQE_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>