Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Paper Illuminates How Light Pushes Atoms

22.08.2006
A research paper to be published in the 18 August edition of the journal Physical Review Letters reveals a new effect in the fundamental way that laser light interacts with atoms.

"Unlike water, which speeds up as it passes through a small nozzle, photons of light have less momentum at the center of a focused laser beam," says Kurt Gibble, an associate professor of physics at Penn State University and the author of the research paper. Gibble's theoretical paper analyzes the speed of an atom after it absorbs a photon of light and reveals the surprising effect that a photon in a narrow laser beam delivers less momentum to an atom than does a photon in a wide beam of light.

Einstein proposed that a light wave is made of photons that carry discrete packets of energy. "When a photon hits an atom, the atom recoils with a speed that is determined by the photon's momentum, similar to two balls colliding on a billiard table," Gibble explains. Physicists often think of a focused laser beam as the intense intersection of two or more infinitely wide light waves, and Gibble's discovery provides an important new understanding of what happens to an atom that is pummeled by photons coming from the different directions of these multiple intersecting light waves. "You might think that an atom would absorb a photon randomly from only one of the beams, but this paper shows that the atom feels the effect of the photons from all of the beams simultaneously and, surprisingly, that it recoils with a speed that is less than it would get from the momentum of any one of the infinitely wide photons."

Gibble's discovery has implications for the accuracy of atomic clocks, which are based on microwaves. "For a laser beam that is 1 centimeter in diameter, the sideways components of the photons act as microwave photons, which have a smaller energy and momentum than visible photons," Gibble explains. The world's most accurate atomic clocks use microwaves. "These microwaves produce sideways forces on the atoms in exactly the same way as a narrow laser beam," Gibble says. "With the traditional approach of treating the microwaves as being infinitely wide, you expect an error in the clock that is comparable to the current accuracy of the best atomic clocks, so this effect needed to be better understood." Gibble's new work demonstrates that the recoil from the microwave photons produces a smaller frequency shift than previously thought, meaning that the clocks actually can be more accurate. Gibble's research also reveals an important correction for the next generation of more precise tests of fundamental physics. Some of these tests use atom interferometers to measure precisely the recoil speed of an atom, which is used to determine the fine-structure constant--a fundamental description of how matter and electromagnetic energy interact. "The important thing is that we now understand much better some of the physics that is behind atomic clocks and atom interferometers," Gibble comments.

Support for this research was provided by the National Aeronautics and Space Administration and the Office of Naval Research.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>