Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Paper Illuminates How Light Pushes Atoms

22.08.2006
A research paper to be published in the 18 August edition of the journal Physical Review Letters reveals a new effect in the fundamental way that laser light interacts with atoms.

"Unlike water, which speeds up as it passes through a small nozzle, photons of light have less momentum at the center of a focused laser beam," says Kurt Gibble, an associate professor of physics at Penn State University and the author of the research paper. Gibble's theoretical paper analyzes the speed of an atom after it absorbs a photon of light and reveals the surprising effect that a photon in a narrow laser beam delivers less momentum to an atom than does a photon in a wide beam of light.

Einstein proposed that a light wave is made of photons that carry discrete packets of energy. "When a photon hits an atom, the atom recoils with a speed that is determined by the photon's momentum, similar to two balls colliding on a billiard table," Gibble explains. Physicists often think of a focused laser beam as the intense intersection of two or more infinitely wide light waves, and Gibble's discovery provides an important new understanding of what happens to an atom that is pummeled by photons coming from the different directions of these multiple intersecting light waves. "You might think that an atom would absorb a photon randomly from only one of the beams, but this paper shows that the atom feels the effect of the photons from all of the beams simultaneously and, surprisingly, that it recoils with a speed that is less than it would get from the momentum of any one of the infinitely wide photons."

Gibble's discovery has implications for the accuracy of atomic clocks, which are based on microwaves. "For a laser beam that is 1 centimeter in diameter, the sideways components of the photons act as microwave photons, which have a smaller energy and momentum than visible photons," Gibble explains. The world's most accurate atomic clocks use microwaves. "These microwaves produce sideways forces on the atoms in exactly the same way as a narrow laser beam," Gibble says. "With the traditional approach of treating the microwaves as being infinitely wide, you expect an error in the clock that is comparable to the current accuracy of the best atomic clocks, so this effect needed to be better understood." Gibble's new work demonstrates that the recoil from the microwave photons produces a smaller frequency shift than previously thought, meaning that the clocks actually can be more accurate. Gibble's research also reveals an important correction for the next generation of more precise tests of fundamental physics. Some of these tests use atom interferometers to measure precisely the recoil speed of an atom, which is used to determine the fine-structure constant--a fundamental description of how matter and electromagnetic energy interact. "The important thing is that we now understand much better some of the physics that is behind atomic clocks and atom interferometers," Gibble comments.

Support for this research was provided by the National Aeronautics and Space Administration and the Office of Naval Research.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>