Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of Quintuplet stars in Milky Way solved

22.08.2006
For the first time, scientists have identified the cluster of Quintuplet stars in the Milky Way's galactic center, next to the super massive black hole, as massive binary stars nearing the end of their life cycle, solving a mystery that had dogged astronomers for more than 15 years.

The nature of the stars was not entirely clear until now. In a paper published in the Aug. 18 issue of Science, co-authors Peter Tuthill of the University of Sydney and Donald Figer of Rochester Institute of Technology show that the Quintuplet cluster consists of young massive binary stars that produce large amounts of dust. Their data reveal that five bright red stars are nearing the end of their "short" lives of approximately 5 million years. These quickly evolving stars burn fast and bright, but die younger than fainter stars, which live for billions of years. The study captures the Quintuplet stars just before disintegrating in supernovae explosions.

Using advanced imaging techniques on the world's biggest telescope at the W.M. Keck Observatory in Hawaii, the scientists captured the stars at the highest attainable resolution for the instrument, far exceeding the capability of the Hubble Space Telescope, which imaged the cluster a decade ago. The extra-resolution gives scientists a new glimpse of the dust plumes surrounding the stars and the swirling spirals Tuthill likened to pinwheels when he identified the first one in 1999 elsewhere in the galaxy.

"Only a few pinwheels are known in the galaxy," Figer says. "The point is, we've found five all next to each other in the same cluster. No one has seen anything like this before."

According to Figer, the swirling dust in pinwheel stars is key to the presence of the most evolved massive stars and points to the presence of pairs of stars. The geometry of the plume allows scientists to measure the properties of the binary stars, including the orbital period and distance.

"The only way that pinwheels can form is if they have two stars, swirling around each other. The stars are so close that their winds collide, forming dust in a spiral shape, just like water sprayed from a garden hose of a twirling sprinkler," Figer says. "A single star wouldn't be able to produce the dust and wouldn't have the spiral outflow."

An earlier study by Figer in 1996 claimed the Quintuplet cluster consists of evolved massive stars that produce dust. Figer's research could not be confirmed until now with the use of the Keck telescope.

"If you want to understand star formation, you have to understand if they are forming alone or if they have partners," Figer says. "The answer gives us a clue as to whether stars form alone or with companions."

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu
http://www.thetigerbeat.com/filestore/quintuplet_cluster.tif

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>