Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find 'pinwheels' in Quintuplet cluster

22.08.2006
Discovery of pinwheel-shaped dust spirals around two of the mysterious cocoon stars in the Quintuplet cluster tells scientists for the first time that they contain a duo of stars instead of just one.

The spiral shape is a telltale sign of a binary system, which means that it is two lighter-weight stars in orbit around each other, rather than one. Although lighter, these stars are still classified as massive, and will each still become a supernovae and provide giant energy pulses in this cluster located near the center of our Milky Way galaxy.

The finding put to rest the debate among astronomers over these dust-enshrouded stars, said John Monnier, assistant professor of astronomy at the University of Michigan. It also proves that massive stars in this cluster are smaller than previously thought, and it follows that dust cocoons seen elsewhere in the galaxy are likely also harboring two stars instead of one.

The findings will appear Aug. 18 in the journal Science, in the paper " 'Pinwheels' in the Quintuplet Cluster." Monnier co-authored the paper with lead author Peter Tuthill, a research astrophysicist in the department of physics at the University of Sydney.

Scientists have debated the nature of the Quintuplet cluster stars for years. The cluster was named after its prominent five bright red stars. However, up until now, the stars have been tough to view because they are quite distant and each hidden in a shroud of dust. Astronomers used the world's biggest optical telescope, the Keck in Hawaii, to zoom in on the stars, according to Tuthill.

The magnification achieved was five times greater than the best existing images of the cluster. Although still unable to see through the dust completely, the enhanced resolution allowed researchers to see that the dust formed spiral pinwheels, the same type of dust seen in a type of massive star called a Wolf-Rayet star.

Monnier and Tuthill first identified the characteristic dust pinwheels around this type of Wolf-Rayet star in 1999. Wolf-Rayet stars are thought to be immediate precursors to supernova, the explosion at the end of a massive star's life. Supernovae are rare events, but can be identified across the universe because they produce extremely bright objects made of hot plasma that can be a millions of times brighter than the star that exploded.

The spiral dust that was observed in the Quintuplet stars is caused by colliding stellar winds from two stars near one another, Monnier said. The aftermath of the violent wind collision produces a stream of dust, and this dust stream shows researchers they are actually observing two or more stars, and allow a much better estimate of their actual masses.

Counting and weighing these massive stars correctly are crucial to understanding the history of our galaxy, since the final supernova explosions have a dominant effect on their surroundings, including producing and spreading out much of the heavier elements needed for forming planets around lower-mass stars like the Sun.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu
http://www.astro.lsa.umich.edu/~monnier/
http://www.astro.lsa.umich.edu/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>