Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers have the first direct proof that dark matter exists

22.08.2006
University of Arizona astronomers and their colleagues got side-on views of two merging galaxy clusters in observations made with state-of-the-art optical and X-ray telescopes.

"Nature gave us this fantastic opportunity to see hypothesized dark matter separated from ordinary matter in this merging system," said UA Steward Observatory astronomer Douglas Clowe, leader of the study.

"Prior to this observation, all of our cosmological models were based on an assumption that we couldn't prove: that gravity behaves the same way on the cosmic scale as on Earth," Clowe said. "The clusters we've looked at in these images are a billion times larger than the largest scales at which we can measure gravity at present, which are on the scale of our solar system."

Clowe added, "What's amazing about this is that the process of galaxy clusters merging is thought to go on all of time. That's how galaxy clusters gain mass. But the fact that we caught this thing only 100 million years after it occurred -- so recently that it barely registers on the cosmic time scale -- is tremendous luck."

Astronomers have known since the 1930s that most of the universe must be made up of something other than normal matter, the stuff that makes stars, planets, all things and creatures. Given the way that galaxies move through space and scientists' understanding of gravity, astronomers theorize that the universe must contain about five times more dark matter than normal matter.

But for the past 70 years, no one had any direct empirical evidence that dark matter even exists.

"Astronomers have been in the somewhat embarrassing position of saying that we understand the universe, although more than 80 percent of it is something we don't know anything about," said UA astronomy Professor Dennis Zaritsky, a member of the discovery team.

"Either most of the matter in the universe is in some invisible, undiscovered form we call 'dark matter' that causes galaxies to move as they do, or we just don't understand the fundamental laws of gravity," Zaritsky said.

When galaxy clusters merge, the galaxies themselves are so sparsely scattered in space that they don't collide, Clowe said. "Even if two galaxies do pass through each other, the distance between the stars is so great that even stars won't collide. Galaxies basically plow through each other almost without slowing down."

Most of a galaxy cluster's normal mass is in its diffuse hot gas. Galaxy clusters typically contain 10 times as much ordinary mass in gas as in stars. So when galaxy clusters merge, the hot gas from each cluster exerts a drag force on the other, slowing all the gas down, Clowe said.The upshot is that the galaxies themselves continue speeding through space, leaving the gas behind.

Observations made with NASA's Chandra X-ray Observatory showed the bulk of ordinary matter is in the hot gas clouds left in the wake of the galaxies. Part of this million-degree plasma of hydrogen and helium, the part from the smaller cluster, forms a spectacular bullet-shaped cloud because a bow shock, or supersonic shock wave, is created in the 10 million mph collision.

But when the astronomers mapped the region of the sky around the galaxies in optical light, they discovered far more mass near the galaxies, ahead of the gas cloud. They analyzed gravitational lensing of distant galaxies in images taken with NASA's Hubble Space Telescope, the European Southern Observatory's 2-meter Wide-Field Imager and one of the twin 6.5-meter Magellan telescopes that a consortium that includes UA operates in Chile.

Gravitational lensing is a phenomenon caused by gravity bending distant starlight. When the astronomers analyzed the shapes and patterns of the distorted light, they discovered the mass of non-luminous, or dark, matter that causes the lensing is far greater than the mass of ordinary matter in the gas cloud.

Clowe and Zaritsky said that dark matter particles are not expected to interact with either normal matter or dark matter particles except through gravity. Hence, they would pass through the collision just as galaxies do.

"We see that dark matter has careened through the collision efficiently," Zaritsky said.

"We're actually using this system to test the idea that dark matter particles are collisionless," Clowe said.

"The bottom line is, there really is dark matter out there," Zaritsky said. "Now we just need to figure out what it is."

The team is publishing the research in a forthcoming issue of the Astrophysical Journal Letters. In addition to Clowe and Zaritsky of UA's Steward Observatory, team members include Marusa Bradac of the Kavli Institute for Particle Astrophysics and Cosmology in Stanford, Calif., Anthony Gonzalez of the University of Florida, and Maxim Markevitch, Scott Randall and Christine Jones of the Harvard-Smithsonian Center for Astrophysics.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://chandra.harvard.edu
http://chandra.nasa.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>