Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers have the first direct proof that dark matter exists

22.08.2006
University of Arizona astronomers and their colleagues got side-on views of two merging galaxy clusters in observations made with state-of-the-art optical and X-ray telescopes.

"Nature gave us this fantastic opportunity to see hypothesized dark matter separated from ordinary matter in this merging system," said UA Steward Observatory astronomer Douglas Clowe, leader of the study.

"Prior to this observation, all of our cosmological models were based on an assumption that we couldn't prove: that gravity behaves the same way on the cosmic scale as on Earth," Clowe said. "The clusters we've looked at in these images are a billion times larger than the largest scales at which we can measure gravity at present, which are on the scale of our solar system."

Clowe added, "What's amazing about this is that the process of galaxy clusters merging is thought to go on all of time. That's how galaxy clusters gain mass. But the fact that we caught this thing only 100 million years after it occurred -- so recently that it barely registers on the cosmic time scale -- is tremendous luck."

Astronomers have known since the 1930s that most of the universe must be made up of something other than normal matter, the stuff that makes stars, planets, all things and creatures. Given the way that galaxies move through space and scientists' understanding of gravity, astronomers theorize that the universe must contain about five times more dark matter than normal matter.

But for the past 70 years, no one had any direct empirical evidence that dark matter even exists.

"Astronomers have been in the somewhat embarrassing position of saying that we understand the universe, although more than 80 percent of it is something we don't know anything about," said UA astronomy Professor Dennis Zaritsky, a member of the discovery team.

"Either most of the matter in the universe is in some invisible, undiscovered form we call 'dark matter' that causes galaxies to move as they do, or we just don't understand the fundamental laws of gravity," Zaritsky said.

When galaxy clusters merge, the galaxies themselves are so sparsely scattered in space that they don't collide, Clowe said. "Even if two galaxies do pass through each other, the distance between the stars is so great that even stars won't collide. Galaxies basically plow through each other almost without slowing down."

Most of a galaxy cluster's normal mass is in its diffuse hot gas. Galaxy clusters typically contain 10 times as much ordinary mass in gas as in stars. So when galaxy clusters merge, the hot gas from each cluster exerts a drag force on the other, slowing all the gas down, Clowe said.The upshot is that the galaxies themselves continue speeding through space, leaving the gas behind.

Observations made with NASA's Chandra X-ray Observatory showed the bulk of ordinary matter is in the hot gas clouds left in the wake of the galaxies. Part of this million-degree plasma of hydrogen and helium, the part from the smaller cluster, forms a spectacular bullet-shaped cloud because a bow shock, or supersonic shock wave, is created in the 10 million mph collision.

But when the astronomers mapped the region of the sky around the galaxies in optical light, they discovered far more mass near the galaxies, ahead of the gas cloud. They analyzed gravitational lensing of distant galaxies in images taken with NASA's Hubble Space Telescope, the European Southern Observatory's 2-meter Wide-Field Imager and one of the twin 6.5-meter Magellan telescopes that a consortium that includes UA operates in Chile.

Gravitational lensing is a phenomenon caused by gravity bending distant starlight. When the astronomers analyzed the shapes and patterns of the distorted light, they discovered the mass of non-luminous, or dark, matter that causes the lensing is far greater than the mass of ordinary matter in the gas cloud.

Clowe and Zaritsky said that dark matter particles are not expected to interact with either normal matter or dark matter particles except through gravity. Hence, they would pass through the collision just as galaxies do.

"We see that dark matter has careened through the collision efficiently," Zaritsky said.

"We're actually using this system to test the idea that dark matter particles are collisionless," Clowe said.

"The bottom line is, there really is dark matter out there," Zaritsky said. "Now we just need to figure out what it is."

The team is publishing the research in a forthcoming issue of the Astrophysical Journal Letters. In addition to Clowe and Zaritsky of UA's Steward Observatory, team members include Marusa Bradac of the Kavli Institute for Particle Astrophysics and Cosmology in Stanford, Calif., Anthony Gonzalez of the University of Florida, and Maxim Markevitch, Scott Randall and Christine Jones of the Harvard-Smithsonian Center for Astrophysics.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://chandra.harvard.edu
http://chandra.nasa.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>