Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1 on the trail of the Moon’s beginnings

21.08.2006
The D-CIXS instrument on ESA's Moon mission SMART-1 has produced the first detection from orbit of calcium on the lunar surface. By doing this, the instrument has taken a step towards answering the old question: did the Moon form from part of the Earth?

Scientists responsible for the D-CIXS instrument on SMART-1 are also announcing that they have detected aluminium, magnesium and silicon. "We have good maps of iron across the lunar surface. Now we can look forward to making maps of the other elements," says Manuel Grande of the University of Wales, Aberystwyth UK, and D-CIXS' Principal Investigator.

Knowing how to translate the D-CIXS orbital data into ‘ground truth’ has been helped by a cosmic coincidence. On 9 August 1976, the Russian spacecraft Luna 24 was launched. On 18 August it touched down in a region of the Moon known as Mare Crisium and returned a sample of the lunar soil to Earth.

In January 2005, SMART-1 was high above Mare Crisium when a giant explosion took place on the Sun. Scientists often dread these storms because they can damage spacecraft but, for the scientists responsible for D-CIXS, it was just what they needed.

The D-CIXS instrument depends on X-ray emission from the Sun to excite elements on the lunar surface, which then emit X-rays at characteristic wavelengths. D-CIXS collects these X-ray fingerprints and translates them into the abundance of each chemical element found on the surface of the Moon. Grande and his colleagues could relate the D-CIXS Mare Crisium results to the laboratory analysis of the Russian lunar samples.

They found that the calcium detected from orbit was in agreement with that found by Luna 24 on the surface of Mare Crisium. As SMART-1 flew on, it swept D-CIXS over the nearby highland regions. Calcium showed up here too, which was a surprise until the scientists looked at the data from another Russian moon mission, Luna 20. That lander had also found calcium back in the 1970s. This boosted the scientists’ confidence in the D-CIXS results.

Ever since American astronauts brought back samples of moonrock during the Apollo Moon landings of the late 1960s/early 1970s, planetary scientists have been struck by the broad similarity of the moonrocks and the rocks found deep in the Earth, in a region known as the mantle. This boosted the theory that the Moon formed from debris left over after the Earth was struck a glancing blow by a Mars-sized planet.

However, the more scientists looked at the details of the moonrock, the more discrepancies they found between them and the earthrocks. Most importantly, the isotopes found in the moonrocks did not agree with those found on Earth.

"The get-out clause is that the rocks returned by the Apollo missions represent only highly specific areas on the lunar surface and so may not be representative of the lunar surface in its entirety," says Grande; hence the need for D-CIXS and its data.

By measuring the abundance of several elements across the lunar surface, scientists can better constrain the contribution of material from the young Earth and its possible impactor to condense and form the Moon. Current models suggest that more came from the impactor than from Earth. Models of the Moon’s evolution and interior structure are necessary to translate the surface measurements into the Moon’s bulk composition.

D-CIXS was a small experimental device, only about the size of a toaster. ESA is now collaborating with India to fly an upgraded version on the Indian lunar probe Chandrayaan, due for launch in 2007–2008. It will map the chemistry of the lunar surface, including the other landing sites from where samples have been brought back to Earth. In this way it will show whether the Apollo and Russian landing sites were typical or special.

"From SMART-1 observations of previous landing sites we can compare orbital observations to the ground truth and expand from the local to global views of the Moon," says Bernard Foing, Project Scientist for SMART-1.

Then, perhaps planetary scientists can decide whether the Moon was indeed once part of the Earth.

Bernard Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEM1RHBUQPE_0.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>