Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light microscope may help unlock some of cells' secrets

17.08.2006
A microscopy technique pioneered with the help of Florida State University's National High Magnetic Field Laboratory has led to the development of a new light microscope capable of looking at proteins on a molecular level.

The new light microscope is so powerful it allows scientists to peer deep inside cells to see the fundamental organization of the key structures within. Developed by researchers at Howard Hughes Medical Institute's Janelia Farm Research Campus in Virginia and the National Institutes of Health, in collaboration with FSU researchers Michael Davidson and Scott Olenych, the microscope is a boon to basic cell biology.

"As the technology advances, it may prove to be a key factor in unlocking the molecular-level secrets of intracellular dynamics," said Davidson, who directs the magnet lab's Optical Microscopy Group.

The microscope and technology appear online in the Aug. 10 issue of Science Express.

The idea for the light microscope and the related new method, called photoactivated localization microscopy, or PALM, was conceived by physicists Eric Betzig and Harald Hess of the Howard Hughes Medical Institute, but they struggled with how to realize their vision. It was biological tools being studied in Davidson's lab that ultimately inspired the two physicists' plan to build a better microscope.

"In the world of biology, there is a new generation of fluorescent proteins that you can switch on at will with a little bit of violet light," Hess said. He and Betzig learned of these molecules, pioneered by Jennifer Lippincott-Schwartz and George Patterson at NIH, during conversations with Davidson.

Davidson suggested that these "optical highlighters" would be the best candidates for Betzig and Hess' experiments. Davidson's group then genetically engineered the highlighters and fused them to natural proteins in his lab. This technique allowed the researchers to attach a label to each copy of a protein they wished to study.

Here's how the PALM technique works: The researchers label the molecules they want to study with a photoactivatable probe, and then expose those molecules to a small amount of violet light. The light activates fluorescence in a small percentage of molecules, and the microscope captures an image of those that are turned on until they bleach. The process is repeated approximately 10,000 times, with each repetition capturing the position of a different subset of molecules.

When a final image is created, it has a resolution previously only achievable with an electron microscope. However, the contrast in electron microscopy is more indiscriminate, whereas PALM can limit contrast to specific proteins of interest. Lippincott-Schwartz said the use of PALM in conjunction with electron microscopy is particularly powerful.

"A great feature of PALM is that it can readily be used with electron microscopy, which produces a detailed image of very small structures -- but not proteins -- in cells," she said. "By correlating a PALM image showing protein distribution with an electron microscope image showing cell structure of the same sample, it becomes possible to understand how molecules are individually distributed in a cellular structure at the molecular scale."

Michael Davidson | EurekAlert!
Further information:
http://www.cites.fsu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>