Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians maximize knowledge of minimal surfaces

17.08.2006
For most people, soap bubbles are little more than ethereal, ephemeral childhood amusements, or a bit of kitsch associated with the Lawrence Welk Show.

But for Johns Hopkins University mathematician William Minicozzi, the translucent film that automatically arranges itself into the least possible surface area on the bubble wand is an elegant and captivating illustration of a mathematical concept called "minimal surfaces." A minimal surface is one with the smallest surface area that can span a boundary.

Mathematicians have studied basic minimal surfaces for more than 250 years, and long ago understood their basic building blocks and how those fundamentals fit together to form a figure with the least surface area and high surface tension.

Little to nothing was known, however, about the characteristics of myriad other, more complicated minimal surfaces until Minicozzi and Massachusetts Institute of Technology colleague Tobias H. Colding broke another "minimal surface code," revealing that pieces of planes, catenoids and helicoids are the building blocks of all minimal surfaces, and not merely the less complicated ones.

Their article ("Shapes of embedded minimal surfaces") appeared in the July 25 issue of the Proceedings of the National Academy of Sciences.

"In its simplest form, we just wanted to figure out the possible shapes of minimal surfaces where certain boundaries (surface area and curvature) are not restricted, and this is what we found out," said Minicozzi, the J.J. Sylvester Professor of Mathematics at Johns Hopkins' Krieger School of Arts and Sciences. "What we've concluded is that no matter how complicated minimal surfaces can be – and they can be very complicated, indeed! – they are all built out of pieces that we completely understand."

As an illustration, Minicozzi suggests thinking about children playing with building blocks: give them three blocks, and the figures that they can construct are rather limited. But give them "billions of blocks and, well, all bets are off, because the possibilities are endless. It's sometimes hard to imagine that big, complex structures are built from the same, basic blocks as are the simpler shapes."

Mathematicians' fascination with minimal surfaces dates back more than two centuries, to famous experiments conducted by Belgian physicist Joseph Antoine Ferdinand Plateau. Dipping a wire bent into various shapes into a vat of soapy water, the scientist created a wide variety of minimal surfaces and concluded that every closed boundary curve that neither touches itself nor intersects with itself can be spanned by a minimal surface.

Minicozzi and Colding began by thinking about these original experiments, and quickly moved on to consider many other minimal surfaces, such as those that exist in nature.

"For instance, we wondered why DNA is like a double spiral staircase," Minicozzi said. "'What' and 'Why' are fundamental questions that, when answered, help us to better understand the world we live in. And we knew that the answer to any question about the shape of natural objects was bound to involve mathematics."

Chalk in hand, the researchers spent years thinking, in particular, about helicoids and trying to understand why the double spiral staircase -- DNA, for example -- was an efficient shape. They had a hunch that the answer would provide an important piece of the puzzle for understanding all minimal surfaces. Even so, Minicozzi and Colding were caught off guard when they viewed a computer animation of the minimal surfaces constructed more than a century ago by a mathematician named Riemann.

"They were built out of helicoids!" Minicozzi said. "This confirmed for us the centrality of our work and opened up the way for other, new applications.

"After this," he said, "we knew that we would be able to show that every minimal surface was built from those pieces. This way of describing very complicated minimal surfaces unlocked many of the secrets of these surfaces, leading to breakthroughs by us and by other mathematicians on problems that were previously daunting and unapproachable."

Though it may seem that such work is of interest only to theoretical mathematicians, Minicozzi begs to differ.

"Minimal surfaces come up in a lot of different physical problems, some more or less practical, but scientists have recently realized that they are extremely useful in nanotechnology," he said. "They say that nanotechnology is the next Industrial Revolution and that it has the potential to alter many aspects of our lives, from how we are treated for illness to how we fulfill our energy needs and beyond. That's why increasing numbers of material scientists and mathematicians are discovering minimal surfaces."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>