Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Far Away Galaxy Under The Microscope

17.08.2006
SINFONI Discovers Rapidly Forming, Large Proto-Disc Galaxies Three Billion Years After The Big Bang

An international group of astronomers have discovered large disc galaxies akin to our Milky Way that must have formed on a rapid time scale, only 3 billion years after the Big Bang. In one of these systems, the combination of adaptive optics techniques with the new SINFONI spectrograph on ESO’s Very Large Telescope (VLT) resulted in a record-breaking resolution of a mere 0.15 arcsecond, giving an unprecedented detailed view of the anatomy of such a distant proto-disc galaxy.

“We have been able, for the first time, to obtain well resolved, two dimensional images of the gas motions in distant star forming galaxies, whose light has traveled more than 11 billion years to the Earth,” said Reinhard Genzel, lead author of a paper in this week’s issue of Nature in which these results are presented.

This tells the story how galaxies looked like a mere 3 billion years after the Big Bang.

Over the past decade astronomers have established a global framework of how galaxies formed and evolved when the Universe was only a few billion years old. Gas of ordinary matter cooled and collected in concentrations of the mysterious ‘dark’ matter (so called dark matter halos). Since that time and up to the present epoch collisions and mergers of galaxies subsequently led to the hierarchical build-up of galaxy mass. This general picture leaves open, however, on what timescales galaxies were assembled and when and how bulges and discs, the primary components of present day galaxies, were formed.

A major study of distant, luminous star forming galaxies at ESO’s VLT, the ‘SINS’ (Spectroscopic Imaging Survey in the Near-Infrared with SINFONI) survey, has now resulted in a major break-through on these questions. This study exploited SINFONI [1], a novel infrared ‘integral field spectrometer’ that simultaneously delivers sharp images, with adaptive optics, and highly resolved colour information (spectra) of an object on the sky.

In the case of the galaxy BzK155043 at cosmological redshift 2.4, the SINFONI observations achieved an angular resolution of 0.15”, a mere 4000 light years at the distance of this high redshift galaxy. With this superior angular resolution the data reveal the physical and dynamical properties in unprecedented detail. Surprisingly the observations reveal a large and massive rotating proto-disc that is channeling gas toward a growing central stellar bulge. The high gas surface densities, the large star formation rate and the moderately young stellar ages derived from these observations suggest that the system was assembled rapidly, by fragmentation and star formation in an initially very gas rich proto-disc. SINS observations of several other massive, high redshift galaxies give similar results.

“When we started the SINS programme,” said Genzel, “we expected to see mostly irregular and perhaps even chaotic motions caused by the frequent merger activity in the young Universe. We were in for a major surprise when we found a number of large, rotating and gas rich disc galaxies whose properties are quite similar to the present day Milky Way”.

The fact that these galaxies are so large and rotate rapidly indicates that the gas has a similar amount of rotation as the dark matter halo from which it cooled, thus empirically solving an important question of galaxy formation.

Natascha Förster Schreiber, lead author of another recent SINS paper in the Astrophysical Journal said: “We now need to understand how these early proto-discs evolved subsequently in time. Our suspicion is that they might not have been stable.”

The SINFONI data suggest that the proto-discs may have eventually been transformed to dense elliptical galaxies, either by internal processes, such as the spectacular gas inflows observed in BzK15504, or by collisions and mergers with other galaxies, which were frequent in the dense environments in which the high redshift luminous star forming galaxies appear to reside in.

Another important aspect of the work are the very high star formation rates deduced for many of the luminous star forming high redshift galaxies, about one hundred times greater than in the present-day Milky Way.

“We have a growing body of evidence that massive galaxies formed much more rapidly in the redshift range 2-3 than originally anticipated,” said Andrea Cimatti, team member from the University of Bologna. “The new SINFONI data give us a first glimpse what processes might be involved.”

The SINS programme on the VLT is a stunning demonstration of what is going to be possible in the next few years with the combination of integral field spectroscopy and adaptive optics.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-31-06.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>