Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Controls to Gold Nanocatalysis

10.08.2006
Researchers at the Georgia Institute of Technology have made a discovery that could allow scientists to exercise more control over the catalytic activity of gold nanoclusters.

The finding – that the dimensionality and structure, and thus the catalytic activity, of gold nanoclusters changes as the thickness of their supporting metal-oxide films is varied – is an important one in the rapidly developing field of nanotechnology. This and further advances in nanocatalysis may lead to lowering the cost of manufacturing materials from plastics to fertilizers. The research appeared in the July 21, 2006 issue of the journal Physical Review Letters.

"We've been searching for methods for controlling and tuning the nanocatalytic activity of gold nanoclusters,” said Uzi Landman, director of the Center for Computational Materials Science and Regents’ professor and Callaway chair of physics at Georgia Tech. “I believe the effect we discovered, whereby the structure and dimensionality of supported gold nanoclusters can be influenced and varied by the thickness of the underlying magnesium-oxide film may open new avenues for controlled nanocatalytic activity,” he said.

Landman’s research group has been exploring the catalytic properties of gold, which is inert in its bulk form, for about seven years. In 1999, along with the experimental group of Ueli Heiz and Wolf-Dieter Schneider at the University of Lausanne, Landman’s group showed that gold exhibits remarkable catalytic capabilities to speed the rate of chemical reactions if it is clustered in groups of eight to about two dozen atoms in size.

Last year in the journal Science, the teams of Landman and Heiz (now at the Technical University of Munich) showed that this catalytic activity involves defects, in the form of missing oxygen atoms, in the catalytic bed on which the gold clusters rest. These defect sites, referred to as F-centers, serve as sites for the gold to anchor itself, giving the gold clusters a slight negative charge. The charged gold transfers an electron to the reacting molecules, weakening the chemical bonds that keep them together. Once the bond is sufficiently weakened, it may be broken, allowing reactions to occur between the adsorbed reactants.

Now Landman’s group has found that by using a thin catalytic bed with a thickness of up to 1 nanometer (nm), or 4-5 layers, of magnesium oxide, one may activate the gold nanoclusters which may act then as catalysts even if the bed is defect-free. A model reaction tested in these studies is one where carbon monoxide and molecular oxygen combine to form carbon dioxide, even at low temperatures. In these reactions, the bond connecting the two atoms in the adsorbed oxygen molecule weakens, thus, promoting the reaction with CO.

In this study, Landman and company simulated the behavior of gold nanoclusters containing eight, sixteen and twenty atoms when placed on catalytic beds of magnesium oxide with a molybdenum substrate supporting the magnesium oxide film. Quantum mechanical calculations showed that when the magnesium oxide film was greater than 5 layers or 1 nm in thickness, the gold cluster kept its three-dimensional structure. However, when the film was less than 1nm, the cluster changed its structure and lied flat on the magnesia bed –wetting and adhering to it.

The gold flattens because the electronic charge from the molybdenum penetrates through the thin layer of magnesium oxide and accumulates at the region where the gold cluster is anchored to the magnesium oxide. With a negative charge underneath the gold nanocluster, its attraction to the molybdenum substrate, located under the magnesia film, causes the cluster to collapse.

"It’s the charge that controls the adhesive strength of gold to the magnesia film, and at the same time it makes gold catalytically active,” said Landman. “When you have a sufficiently thin layer of magnesium oxide, the charge from the underlying metal penetrates through – all the way to the interface of the gold cluster.”

In the previous experimental studies, defects in the magnesium oxide were required to bring about charging of the adsorbed clusters.

"Until now, the metal substrate was regarded only as an experimental necessity for growing the magnesium oxide films on top of it. Now we found that it can be used as a design feature of the catalytic system. This field holds many surprises,” said Landman.

Landman’s group is currently undertaking further explorations into possibilities to regulate the charge, and hence the catalytic activity, in gold nanocatalytic systems.

Landman and Heiz’s book titled “Nanocatalysis” is scheduled to be published this month.

The current research was performed at the Center for Computational Materials Science by postdoctoral fellows Davide Ricci and Angelo Bongiorno under the supervision of Landman. The research team also included Dr. Gianfranco Pacchioni, a colleague from the University of Milano.

The research appearing in the journal Science in 2005 was led by Landman and Heiz with Research Scientist Bokwon Yoon of the Center for Computational Materials Science as lead author.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu
http://www.gatech.edu/news-room/release.php?id=1078

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>