Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars too old to be trusted? A possible Stellar Solution to the Cosmological Lithium Problem

10.08.2006
Analysing a set of stars in a globular cluster with ESO's Very Large Telescope, astronomers may have found the solution to a critical cosmological and stellar riddle. Until now, an embarrassing question was why the abundance of lithium produced in the Big Bang is a factor 2 to 3 times higher than the value measured in the atmospheres of old stars. The answer, the researchers say, lies in the fact that the abundances of elements measured in a star's atmosphere decrease with time.

"Such trends are predicted by models that take into account the diffusion of elements in a star", said Andreas Korn, lead-author of the paper reporting the results in this week's issue of the journal Nature [1,2]. "But an observational confirmation was lacking. That is, until now."

Lithium is one of the very few elements to have been produced in the Big Bang. Once astronomers know the amount of ordinary matter present in the Universe [3], it is rather straightforward to derive how much lithium was created in the early Universe. Lithium can also be measured in the oldest, metal-poor stars, which formed from matter similar to the primordial material. But the cosmologically predicted value is too high to reconcile with the measurements made in the stars. Something is wrong, but what?

Diffusive processes altering the relative abundances of elements in stars are well known to play a role in certain classes of stars. Under the force of gravity, heavy elements will tend to sink out of visibility into the star over the course of billions of years. "The effects of diffusion are expected to be more pronounced in old, very metal-poor stars", said Korn. "Given their greater age, diffusion has had more time to produce sizeable effects than in younger stars like the Sun."

The astronomers thus set up an observational campaign to test these model predictions, studying a variety of stars in different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion.

Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times.

The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from.

"Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed."

"The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."

[1] "A probable stellar solution to the cosmological lithium discrepancy", by A.J. Korn et al.

[2] The team is composed of Andreas Korn, Paul Barklem, Remo Collet, Nikolai Piskunov, and Bengt Gustafsson (Uppsala University, Sweden), Frank Grundahl (University of Århus, Denmark), Olivier Richard (Université Montpellier II, France), and Lyudmila Mashonkina (Russian Academy of Science, Russia).

[3] High-precision measurements of the matter content of the Universe were made in recent years by studying the cosmic microwave background.

[4] Globular clusters are large aggregates of stars; over 100 are known in our galaxy, the Milky Way. The largest contain millions of stars. They are some of the oldest objects observed in the Universe and were presumably formed at about the same time as the Milky Way Galaxy, a few hundred million years after the Big Bang.

Henri Boffin | alfa
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>