Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Shape of Life: Research Sheds Light on How Cells Take Shape

09.08.2006
Brown University physicists have identified a surprising force in pattern formation – physical force. Results of their work shed important light on how life takes shape inside cells and are published in the Proceedings of the National Academy of Sciences.

How life takes shape is a mystery. Butterfly or baby, cells organize themselves into tissues, tissues form organs, organs become organisms. Over and over, patterns emerge in all living creatures. Spiders get eight legs. Leopards get spots. Every nautilus is encased in an elegant spiral shell.

This phenomenon of pattern formation is critical in developmental biology. But the forces that govern it are far from clear. Alan Turing, father of modern computer science, suggested that the basis for pattern formation was chemical. New research conducted at Brown University and published in the Proceedings of the National Academy of Sciences supplies another surprising answer: Physical, as well as chemical, forces can dictate pattern formation.

In a two-year study, Brown physicists James Valles and Jay Tang puzzled over the patterns created by proteins called microtubules. Shaped like long, skinny straws, these proteins are puny – they measure only about 250 atoms wide – but play critical roles in the body. Microtubules help cells divide. They also act as scaffolds, giving cells their shape, and serve as train tracks of sorts, moving important bits like chromosomes and mitochondria around inside of cells.

As microtubules multiply, they form patterns that can be seen by the naked eye. The pattern is a series of waves that look a bit like zebra stripes. How, Valles and Tang asked, do they form?

Working with graduate students Yifeng Liu and Yongxing Guo, Valles and Tang grew their own microtubules then studied them under three types of microscopes. After two years of work, they solved the mystery. Chemical bonding and mechanical instability were responsible for the stripes.

In the first stage of the process, the microtubules line up uniformly, like pickets in a fence. As the microtubules continue to grow, they clump together in bundles of 200 to 300. Then these bundles buckle. Valles and Tang believe that the buckling occurs because, as microtubules grow, they create energy and generate force. Then the bundles buckle to relieve compression stress.

“Think of it like the ‘wave’ that fans create during a soccer game. One bundle buckles, then it sets off another bundle, then another bundle, until you get a sea of undulating stripes,” Valles said. “What’s exciting is that this finding may provide insight into how the shapes that make up the human body are created.”

Tang agreed: “Pattern formation is critical to the creation of life. Now we really understand the mechanism behind this type of pattern in microtubules. Force is the key.”

The National Aeronautics and Space Administration funded the research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>