Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Shape of Life: Research Sheds Light on How Cells Take Shape

09.08.2006
Brown University physicists have identified a surprising force in pattern formation – physical force. Results of their work shed important light on how life takes shape inside cells and are published in the Proceedings of the National Academy of Sciences.

How life takes shape is a mystery. Butterfly or baby, cells organize themselves into tissues, tissues form organs, organs become organisms. Over and over, patterns emerge in all living creatures. Spiders get eight legs. Leopards get spots. Every nautilus is encased in an elegant spiral shell.

This phenomenon of pattern formation is critical in developmental biology. But the forces that govern it are far from clear. Alan Turing, father of modern computer science, suggested that the basis for pattern formation was chemical. New research conducted at Brown University and published in the Proceedings of the National Academy of Sciences supplies another surprising answer: Physical, as well as chemical, forces can dictate pattern formation.

In a two-year study, Brown physicists James Valles and Jay Tang puzzled over the patterns created by proteins called microtubules. Shaped like long, skinny straws, these proteins are puny – they measure only about 250 atoms wide – but play critical roles in the body. Microtubules help cells divide. They also act as scaffolds, giving cells their shape, and serve as train tracks of sorts, moving important bits like chromosomes and mitochondria around inside of cells.

As microtubules multiply, they form patterns that can be seen by the naked eye. The pattern is a series of waves that look a bit like zebra stripes. How, Valles and Tang asked, do they form?

Working with graduate students Yifeng Liu and Yongxing Guo, Valles and Tang grew their own microtubules then studied them under three types of microscopes. After two years of work, they solved the mystery. Chemical bonding and mechanical instability were responsible for the stripes.

In the first stage of the process, the microtubules line up uniformly, like pickets in a fence. As the microtubules continue to grow, they clump together in bundles of 200 to 300. Then these bundles buckle. Valles and Tang believe that the buckling occurs because, as microtubules grow, they create energy and generate force. Then the bundles buckle to relieve compression stress.

“Think of it like the ‘wave’ that fans create during a soccer game. One bundle buckles, then it sets off another bundle, then another bundle, until you get a sea of undulating stripes,” Valles said. “What’s exciting is that this finding may provide insight into how the shapes that make up the human body are created.”

Tang agreed: “Pattern formation is critical to the creation of life. Now we really understand the mechanism behind this type of pattern in microtubules. Force is the key.”

The National Aeronautics and Space Administration funded the research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>