Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Breakthrough Makes “Lab-on-a-Chip” Possible

04.08.2006
Compact device can pack big sensing power on a chip
Georgia Tech researchers have found a way to shrink all the sensing power of sophisticated biosensors — such as sensors that can detect trace amounts of a chemical in a water supply or a substance in your blood — onto a single microchip.

In compact communication, signal processing and sensing optics technologies, multiple wavelengths of light are combined as a space-saving measure as they carry information. The wavelengths must then be separated again when they reach their destinations. Wavelengths used for these sophisticated applications have very high spectral resolution, meaning the distance between wavelengths is very small. The device that sorts out these crowded wavelengths is called a wavelength-demultipler (WD).

Compact optical WDs are key in spectral analysis for biosensers small enough to fit on a chip and for integrated circuits for optical information processing.

Georgia Tech researchers have designed a WD able to function at very high resolution in much tighter confines (as small as 64 microns by 100 microns — smaller than a millimeter) by developing a new design for photonic crystals, which are highly periodic structures typically etched in very thin silicon that are designed to control light and have the potential to revolutionize everything from computing to communications. The research had been published in Laser Focus World and Optics Express and was recently presented at the Conference on Lasers and Electro-Optics (CLEO 2006).

“We believe we have developed the most compact WD that has been reported to date,” said Ali Adibi, a professor in Georgia Tech’s School of Electrical and Computer Engineering and the lead researcher on the project. “If you want to have many optical functions on a single micro- or nano-sized chip, you have to be able to practically integrate all those functions in the smallest amount of space possible. Our WD solves many problems associated with combining delicate optical functions in such a small space.”

The Georgia Tech team was able to shrink its WD by combining into one crystal three unique properties of photonics crystals — the superprism effect (separating wavelengths much more finely than a regular prism), negative diffraction or focusing (reversing the expansion of the light beam and focusing it back to its original size after interacting with the material being analyzed) and negative refraction (filtering wanted and unwanted wavelengths).

By combining these effects, Georgia Tech’s WD takes an expanded beam of light and instead of expanding it further as wavelengths are separated, focuses the wavelength into different locations. The structure simultaneously separates wavelengths, focuses wavelengths instead of refracting them and then separates the wavelengths in one structure, solving the problems associated with wavelength interference without adding extra devices to the system.

“This project really demonstrates the importance of dispersion engineering in photonic crystals — and it’s all done by changing the geometry of some holes you etch in the silicon. It’s very simple and it allows you to combine properties into one material that you never could before,” Adibi said.

Despite the more advanced capabilities of the photonic crystals used in Georgia Tech’s WD, they are no more complex or difficult to manufacture than conventional photonic crystals, Adibi added.

The team members created these newly optimized crystals by using a modeling tool they developed two years ago to test the properties of a material much faster than time-consuming conventional numerical methods.

The result is a WD that is less than a millimeter in all dimensions rather than the several centimeters of other currently available WDs. Furthermore, Georgia Tech’s WD can be integrated for several other functionalities on a single chip for signal processing, communications, or sensing and lab on-a-chip applications.

The work was supported by the Air Force Office of Scientific Research (AFOSR, G. Pomrenke) and in part by the National Science Foundation (NSF) and David and Lucile Packard Foundation.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>