Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Breakthrough Makes “Lab-on-a-Chip” Possible

04.08.2006
Compact device can pack big sensing power on a chip
Georgia Tech researchers have found a way to shrink all the sensing power of sophisticated biosensors — such as sensors that can detect trace amounts of a chemical in a water supply or a substance in your blood — onto a single microchip.

In compact communication, signal processing and sensing optics technologies, multiple wavelengths of light are combined as a space-saving measure as they carry information. The wavelengths must then be separated again when they reach their destinations. Wavelengths used for these sophisticated applications have very high spectral resolution, meaning the distance between wavelengths is very small. The device that sorts out these crowded wavelengths is called a wavelength-demultipler (WD).

Compact optical WDs are key in spectral analysis for biosensers small enough to fit on a chip and for integrated circuits for optical information processing.

Georgia Tech researchers have designed a WD able to function at very high resolution in much tighter confines (as small as 64 microns by 100 microns — smaller than a millimeter) by developing a new design for photonic crystals, which are highly periodic structures typically etched in very thin silicon that are designed to control light and have the potential to revolutionize everything from computing to communications. The research had been published in Laser Focus World and Optics Express and was recently presented at the Conference on Lasers and Electro-Optics (CLEO 2006).

“We believe we have developed the most compact WD that has been reported to date,” said Ali Adibi, a professor in Georgia Tech’s School of Electrical and Computer Engineering and the lead researcher on the project. “If you want to have many optical functions on a single micro- or nano-sized chip, you have to be able to practically integrate all those functions in the smallest amount of space possible. Our WD solves many problems associated with combining delicate optical functions in such a small space.”

The Georgia Tech team was able to shrink its WD by combining into one crystal three unique properties of photonics crystals — the superprism effect (separating wavelengths much more finely than a regular prism), negative diffraction or focusing (reversing the expansion of the light beam and focusing it back to its original size after interacting with the material being analyzed) and negative refraction (filtering wanted and unwanted wavelengths).

By combining these effects, Georgia Tech’s WD takes an expanded beam of light and instead of expanding it further as wavelengths are separated, focuses the wavelength into different locations. The structure simultaneously separates wavelengths, focuses wavelengths instead of refracting them and then separates the wavelengths in one structure, solving the problems associated with wavelength interference without adding extra devices to the system.

“This project really demonstrates the importance of dispersion engineering in photonic crystals — and it’s all done by changing the geometry of some holes you etch in the silicon. It’s very simple and it allows you to combine properties into one material that you never could before,” Adibi said.

Despite the more advanced capabilities of the photonic crystals used in Georgia Tech’s WD, they are no more complex or difficult to manufacture than conventional photonic crystals, Adibi added.

The team members created these newly optimized crystals by using a modeling tool they developed two years ago to test the properties of a material much faster than time-consuming conventional numerical methods.

The result is a WD that is less than a millimeter in all dimensions rather than the several centimeters of other currently available WDs. Furthermore, Georgia Tech’s WD can be integrated for several other functionalities on a single chip for signal processing, communications, or sensing and lab on-a-chip applications.

The work was supported by the Air Force Office of Scientific Research (AFOSR, G. Pomrenke) and in part by the National Science Foundation (NSF) and David and Lucile Packard Foundation.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked ninth among U.S. News & World Report's top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>