Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autonomous lenses may bring microworld into focus

03.08.2006
When Hongrui Jiang looked into a fly's eye, he saw a way to make a tiny lens so "smart" that it can adapt its focal length from minus infinity to plus infinity-without external control.

Incorporating hydrogels that respond to physical, chemical or biological stimuli and actuate lens function, these liquid microlenses could advance lab-on-a-chip technologies, optical imaging, medical diagnostics and bio-optical microfluidic systems.

Jiang, a University of Wisconsin-Madison assistant professor of electrical and computer engineering; David Beebe, a professor of biomedical engineering, postdoctoral researcher Liang Dong, and doctoral student Abhiskek Agarwal describe the technology in the Aug. 3 issue of the journal Nature.

At this size-hundreds of microns up to about a millimeter-variable focal length lenses aren't new; however, existing microlenses require external control systems to function, says Beebe. "The ability to respond in autonomous fashion to the local environment is new and unique," he says.

In a lab-on-a-chip environment, for example, a researcher might want to detect a potentially hazardous chemical or biological agent in a tiny fluid sample. Using traditional sensors on microchips is an option for this kind of work-but liquid environments often aren't kind to the electronics, says Jiang.

That's where hydrogels - thick, jellylike polymers - are important. Researchers can tune a hydrogel to be responsive to just about any stimulus parameter, including temperature and pH, says Jiang. So as the hydrogel "senses" the substance of interest, it responds with the programmed reaction. "We use the hydrogel to provide actuation force," he says.

A water-oil interface forms his group's lens, which resides atop a water-filled tube with hydrogel walls. The tube's open top, or aperture, is thin polymer. The researchers applied one surface treatment to the aperture walls and underside, rendering them hydrophilic, or water-attracting. They applied another surface treatment to the top side of the aperture, making them hydrophobic, or water-repelling. Where the hydrophilic and hydrophobic edges meet, the water-oil lens is secured, or pinned, in place.

When the hydrogel swells in response to a substance, the water in the tube bulges up and the lens becomes divergent; when the hydrogel contracts, the water in the tube bows down and the lens becomes convergent. "The smaller the focal length, the closer you can look," says Jiang.

Because they enable researchers to receive optical signals, the lenses may lead to new sensing methods, he says. Researchers could measure light intensity, like fluorescence, or place the lenses at various points along a microfluidic channel to monitor environmental changes. "We've also thought about coupling them to electronics-that is, using electrodes to control the hydrogel," says Beebe. "Then you can think about lots of imaging applications, like locating the lenses at the ends of catheters."

Clustered in an array, the lenses also could enable researchers to take advantage of combinatorial patterns and provide them with more data, he says.

The array format improves upon the natural compound eye, found in most insects and some crustaceans. This eye essentially is a sphere comprised of thousands of smaller lenses, each of which has a fixed focal length. "Since the lenses are fixed, an object has to be a certain distance away for it to be clearly seen," says Jiang. "In some sense, our work is actually better than nature, because we can tune the focal length now so we can scan through a larger range of view field."

Fabricating lenses is a straightforward, inexpensive process that takes just a couple of hours. The real advantage, however, is their autonomous function, says Jiang. "That forms a universal platform," he says. "We have a single structure and we can put different kinds of hydrogels in and they can be responsive to different parameters. By looking at the outputs of these lenses, I know what's going on in that location."

Hongrui Jiang | EurekAlert!
Further information:
http://www.wisc.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>