Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autonomous lenses may bring microworld into focus

03.08.2006
When Hongrui Jiang looked into a fly's eye, he saw a way to make a tiny lens so "smart" that it can adapt its focal length from minus infinity to plus infinity-without external control.

Incorporating hydrogels that respond to physical, chemical or biological stimuli and actuate lens function, these liquid microlenses could advance lab-on-a-chip technologies, optical imaging, medical diagnostics and bio-optical microfluidic systems.

Jiang, a University of Wisconsin-Madison assistant professor of electrical and computer engineering; David Beebe, a professor of biomedical engineering, postdoctoral researcher Liang Dong, and doctoral student Abhiskek Agarwal describe the technology in the Aug. 3 issue of the journal Nature.

At this size-hundreds of microns up to about a millimeter-variable focal length lenses aren't new; however, existing microlenses require external control systems to function, says Beebe. "The ability to respond in autonomous fashion to the local environment is new and unique," he says.

In a lab-on-a-chip environment, for example, a researcher might want to detect a potentially hazardous chemical or biological agent in a tiny fluid sample. Using traditional sensors on microchips is an option for this kind of work-but liquid environments often aren't kind to the electronics, says Jiang.

That's where hydrogels - thick, jellylike polymers - are important. Researchers can tune a hydrogel to be responsive to just about any stimulus parameter, including temperature and pH, says Jiang. So as the hydrogel "senses" the substance of interest, it responds with the programmed reaction. "We use the hydrogel to provide actuation force," he says.

A water-oil interface forms his group's lens, which resides atop a water-filled tube with hydrogel walls. The tube's open top, or aperture, is thin polymer. The researchers applied one surface treatment to the aperture walls and underside, rendering them hydrophilic, or water-attracting. They applied another surface treatment to the top side of the aperture, making them hydrophobic, or water-repelling. Where the hydrophilic and hydrophobic edges meet, the water-oil lens is secured, or pinned, in place.

When the hydrogel swells in response to a substance, the water in the tube bulges up and the lens becomes divergent; when the hydrogel contracts, the water in the tube bows down and the lens becomes convergent. "The smaller the focal length, the closer you can look," says Jiang.

Because they enable researchers to receive optical signals, the lenses may lead to new sensing methods, he says. Researchers could measure light intensity, like fluorescence, or place the lenses at various points along a microfluidic channel to monitor environmental changes. "We've also thought about coupling them to electronics-that is, using electrodes to control the hydrogel," says Beebe. "Then you can think about lots of imaging applications, like locating the lenses at the ends of catheters."

Clustered in an array, the lenses also could enable researchers to take advantage of combinatorial patterns and provide them with more data, he says.

The array format improves upon the natural compound eye, found in most insects and some crustaceans. This eye essentially is a sphere comprised of thousands of smaller lenses, each of which has a fixed focal length. "Since the lenses are fixed, an object has to be a certain distance away for it to be clearly seen," says Jiang. "In some sense, our work is actually better than nature, because we can tune the focal length now so we can scan through a larger range of view field."

Fabricating lenses is a straightforward, inexpensive process that takes just a couple of hours. The real advantage, however, is their autonomous function, says Jiang. "That forms a universal platform," he says. "We have a single structure and we can put different kinds of hydrogels in and they can be responsive to different parameters. By looking at the outputs of these lenses, I know what's going on in that location."

Hongrui Jiang | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>