Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Sub-Stellar Jonah

03.08.2006
Brown dwarf survives being swallowed

Using ESO's Very Large Telescope, astronomers have discovered a rather unusual system, in which two planet-size stars, of different colours, orbit each other. One is a rather hot white dwarf, weighing a little bit less than half as much as the Sun. The other is a much cooler, 55 Jupiter-masses brown dwarf.

"Such a system must have had a very troubled history", said Pierre Maxted, lead author of the paper that reports the study in this week's issue of Nature. "Its existence proves that the brown dwarf came out almost unaltered from an episode in which it was swallowed by a red giant."

The two objects, separated by less than 2/3 of the radius of the Sun or only a few thousandths of the distance between the Earth and the Sun, rotate around each other in about 2 hours. The brown dwarf [1] moves on its orbit at the amazing speed of 800 000 km/h!

The two stars were not so close in their past. Only when the solar-like star that has now become a white dwarf [2] was a red giant, did the separation between the two objects diminish drastically. During this fleeting moment, the giant engulfed its companion. The latter, feeling a large drag similar to trying to swim in a bath full of oil, spiralled in towards the core of the giant. The envelope of the giant was finally ejected, leaving a binary system in which the companion is in a close orbit around a white dwarf.

"Had the companion been less than 20 Jupiter masses, it would have evaporated during this phase", said Maxted."

The brown dwarf shouldn't rejoice too quickly to have escaped this doom, however. Einstein's General Theory of Relativity predicts that the separation between the two stars will slowly decrease.

"Thus, in about 1.4 billion years, the orbital period will have decreased to slightly more than one hour", said Ralf Napiwotzki, from the University of Hertfordshire (UK) and co-author of the study. "At that stage, the two objects will be so close that the white dwarf will work as a giant "vacuum cleaner", drawing gas off its companion, in a cosmic cannibal act."

The low mass companion to the white dwarf (named WD0137-349) was found using spectra taken with EMMI at ESO's New Technology Telescope at La Silla. The astronomers then used the UVES spectrograph on ESO's Very Large Telescope to record 20 spectra and so measure the period and the mass ratio.

[1]: Brown dwarfs are 'failed stars' that have less than 75 Jupiter masses and are unable to sustain nuclear fusion in their core.

[2]: White dwarfs are Earth-size, hot and extremely dense stars that represent the end products of the evolution of solar-like stars. During most of their life, such stars draw most of their energy from the transformation of hydrogen into helium. But at some moment, the hydrogen fuel will run out: this phase - still many billions of years into the future for the Sun - signals the beginning of profound, increasingly rapid changes in the star which will ultimately lead to its death. The star dramatically increases in radius, becoming a red giant. Later, it will expel huge quantity of gas and appear as a planetary nebula. Once the planetary nebula has dissolved, one is left with a white dwarf.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-28-06.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>