Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mare Serenitatis: crater statistics and lunar chronology

02.08.2006
This animated sequence, composed of three images taken by the advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 spacecraft, shows a portion of Mare Serenitatis on the Moon.

AMIE obtained the images on 18 March 2006 from distances between 1257 and 1213 kilometres from the surface, with a ground resolution ranging between 114 and 110 metres per pixel.

The imaged area is centred at about 21º East longitude and 18º North latitude, with a lunar field of view of 57 km. The Sun was on the West direction (top of this image) at about 50 degrees elevation.

Mare Serenitatis is one of the lunar maria, that are vast lava plains on the lunar surface. It formed between 3.9 and 3.8 thousand million years ago, a period in which the Moon was heavily bombarded by asteroids and the major impact basins on the Moon were formed.

This was followed by an episode of lunar volcanism that flooded the basin with basalt creating a fresh and flat surface.

To its southeast border, Mare Serenitatis lies close to Mare Tranquillitatis. Both maria were visited by previous lunar landers. In particular, Luna 21 and Apollo 17 (the last manned lunar mission to land on the Moon so far), landed on Mare Serenitatis in January 1973 and December 1972, respectively.
"Thanks to the solar elevation and SMART-1 camera resolution, the statistics of the sizes of the craters can be well determined in different units," says SMART-1 Project scientist Bernard Foing. "This permits us to establish a chronology, calibrated on absolute ages from isotopic measurements on returned lunar samples".

For more information

Bernard H. Foing, ESA SMART-1 Project Scientist
Email: bernard.foing @ esa.int
Jean-Luc Josset, SPACE-X Space Exploration Institute
Email: jean-luc.josset @ space-x.ch

Bernard Foing | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEM847BUQPE_0.html

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>