Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carefully Mixed Radiation Cocktail Reduces Collateral Damage In Breast Cancer Patients

A carefully determined mixture of electron and x-ray beams precisely treated breast tumors while significantly reducing collateral skin damage in 78 patients, researchers will report on August 1 at the annual meeting of the American Association of Physicists in Medicine in Orlando. The key to choosing the right mixture of beams, as well as their individual properties, was a sophisticated computer approach developed by medical physicists Jinsheng Li, Ph.D. ( and Chang-Ming Ma, Ph.D. of Fox Chase Cancer Center in Philadelphia.

In treating shallow tumors such as those that occur in the breast, physicians have been turning to mixed-beam radiation therapy (MBRT), which employs separate beams of electrons and photons (x-rays). The two types of radiation complement one another, as electrons generally travel to shallow depths while the x-rays can penetrate to deeper parts of the tumor as needed.

However, each beam interacts in complex ways with its environment, making their exact path to the tumor region hard to predict. Nonetheless, physicists can calculate the probability for a given beam to follow a desired trajectory.

Therefore, Li and Ma use computers to simulate billions of trips of each beam to the unique landscape of each tumor. Gathering the statistics from these billions of trials, they determine the best beam properties and mixtures.

The computer simulations helped oncologists send accurately targeted doses for 78 breast cancer patients receiving "hypofractionated" treatments, in which the patients received fewer, but more potent, doses of radiation. The beams delivered all the radiation within a small margin of the tumor's edge, dramatically reducing radiation damage to surrounding healthy tissue. The researchers expect their approach to provide benefits for reducing collateral damage in the treatment of shallow tumors in the breast, chest wall, and head-and-neck region.

Associated Meeting Papers:
TU-D-224A-6, "Advanced Mixed Beam Therapy Using MERT and IMRT," Tuesday, August 1, 2006, 2:30 PM, Room 224 A. Click Here for Technical Abstract

WE-E-224C-3, "Advanced Mixed Beam Radiotherapy for Breast and Head and Neck," Wednesday, August 2, 4:24, Room 224A. Click Here for Technical Abstract

Presented at: 48th Annual Meeting of the American Association of Physicists in Medicine, July 30-August 3, 2006, Orange County Convention Center, Orlando, FL. Click Here for Meeting Homepage

AAPM is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings

Ben Stein | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>