Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carefully Mixed Radiation Cocktail Reduces Collateral Damage In Breast Cancer Patients

01.08.2006
A carefully determined mixture of electron and x-ray beams precisely treated breast tumors while significantly reducing collateral skin damage in 78 patients, researchers will report on August 1 at the annual meeting of the American Association of Physicists in Medicine in Orlando. The key to choosing the right mixture of beams, as well as their individual properties, was a sophisticated computer approach developed by medical physicists Jinsheng Li, Ph.D. (Jinsheng.Li@fccc.edu) and Chang-Ming Ma, Ph.D. of Fox Chase Cancer Center in Philadelphia.

In treating shallow tumors such as those that occur in the breast, physicians have been turning to mixed-beam radiation therapy (MBRT), which employs separate beams of electrons and photons (x-rays). The two types of radiation complement one another, as electrons generally travel to shallow depths while the x-rays can penetrate to deeper parts of the tumor as needed.

However, each beam interacts in complex ways with its environment, making their exact path to the tumor region hard to predict. Nonetheless, physicists can calculate the probability for a given beam to follow a desired trajectory.

Therefore, Li and Ma use computers to simulate billions of trips of each beam to the unique landscape of each tumor. Gathering the statistics from these billions of trials, they determine the best beam properties and mixtures.

The computer simulations helped oncologists send accurately targeted doses for 78 breast cancer patients receiving "hypofractionated" treatments, in which the patients received fewer, but more potent, doses of radiation. The beams delivered all the radiation within a small margin of the tumor's edge, dramatically reducing radiation damage to surrounding healthy tissue. The researchers expect their approach to provide benefits for reducing collateral damage in the treatment of shallow tumors in the breast, chest wall, and head-and-neck region.

Associated Meeting Papers:
TU-D-224A-6, "Advanced Mixed Beam Therapy Using MERT and IMRT," Tuesday, August 1, 2006, 2:30 PM, Room 224 A. Click Here for Technical Abstract

WE-E-224C-3, "Advanced Mixed Beam Radiotherapy for Breast and Head and Neck," Wednesday, August 2, 4:24, Room 224A. Click Here for Technical Abstract

Presented at: 48th Annual Meeting of the American Association of Physicists in Medicine, July 30-August 3, 2006, Orange County Convention Center, Orlando, FL. Click Here for Meeting Homepage

ABOUT AAPM
AAPM is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings

Ben Stein | EurekAlert!
Further information:
http://www.aapm.org
http://www.aip.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>