Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualising invisibility

31.07.2006
Invisibility has been an ingredient of myths, novels and films for millennia – from Perseus versus Medusa in Greek legend to James Bond’s latest car and Harry Potter’s cloak. A new study published today by the Institute of Physics reveals that invisibility is closer than we think.

The paper, Notes on conformal invisibility devices, published in the New Journal of Physics (co-owned by the Institute of Physics and German Physical Society) describes the physics of several theoretical devices that could create the ultimate illusion – invisibility.

“Objects are visible because they reflect light rays” says author Dr Ulf Leonhardt at St Andrews University, Scotland. “To be invisible, an object would have to let light pass through it, like H. G. Well’s Invisible Man.

Alternatively light would have to bend around an object for it to be invisible. The ideas in this paper are based around devices that will bend light or radio waves around a hole inside the device. Any object placed inside the hole will become invisible. The light would flow round the hole like water around an obstacle.”

The bending of light is the cause of many optical illusions, such as mirages in the desert. Light bends in the hotter air near the ground in the desert and this causes a reflection of the sky on the ground – a mirage.

Dr Leonhardt went on to say “The devices work by bending light, as in a mirage. However, a mirage involves the reflection of light which produces the shiny image that can be seen: an invisibility device bends light without producing an image. To do this, the devices must have carefully designed refractive index profiles. The paper explains the physics and mathematics behind the devices using images rather than complex equations: it visualizes invisibility.”

The refractive index is a measure of the optical length that light has to travel in a medium: the higher the refractive index, the longer the optical path is to the light ray. Light rays bend when the refractive index of the medium they are travelling through varies. According to Fermat’s Principle of optical paths, light will follow the shortest optical path length. In the case of the mirage, air closer to the desert ground is hotter and has a lower refractive index than the cooler air higher up. Therefore light bends close to the desert floor in order to stay in the lower refractive index region.

Dr Leonhardt added “The next step is actually making one of these theoretical devices. There are advances being made in metamaterials that mean the first devices will probably be used for bending radar waves or the electromagnetic waves used by mobile phones. Such devices may be useful in wireless technology, for instance in protecting sensitive electronics from mobile-phone radiation in airplanes. After these have been developed, it is possible that devices that work for visible light are not too far behind.”

Helen MacBain | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/abstract/1367-2630/8/7/118

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>