Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helium atoms sent by nozzle may light way for new imaging approach

28.07.2006
University of Oregon professor suggests an atom camera

A newly devised nozzle fitted with a pinhole-sized capillary has allowed researchers to distribute helium atoms with X-ray-like waves on randomly shaped surfaces. The technique could power the development of a new microscope for nanotechnology, allowing for a non-invasive, high-resolution approach to studying both organic and inorganic materials.

All that is needed is a camera-like detector, which is now being pursued, to quickly capture images that offer nanometer resolution, said principal investigator Stephen Kevan, a physics professor at the University of Oregon. If successful, he said, the approach would build on advances already achieved with emerging X-ray-diffraction techniques.

Reporting in the July 7 issue of Physical Review Letters, Kevan's four-member team described how they sent continuous beams of helium atoms and hydrogen molecules precisely onto material with irregular surfaces and measured the speckle diffraction pattern as the wave-like atoms scattered from the surface.

The research, funded by the National Science Foundation and U.S. Department of Education, was the first to capture speckle diffraction patterns using atomic de Broglie waves. The Nobel Prize in physics went to France's Louis de Broglie in 1929 for his work on the properties of matter waves.

"The approach of using the wave nature of atoms goes back 100 years to the founding of quantum mechanics," Kevan said. "Our goal is to make atomic de Broglie waves that have very smooth wave fronts, as in the case in laser light. Usually atom sources do not provide wave fronts that are aligned coherently, or nice and orderly."

The nozzle used in the experiments is similar to one on a garden hose. However, it utilizes a micron-sized glass capillary, borrowed from patch-clamp technology used in neuroscience. The capillary, smaller than a human hair, provides very small but bright-source atoms that can then be scattered from a surface. This distribution of scattered atoms is measured with high resolution using a field ionization detector.

The helium atoms advance with de Broglie wavelengths similar to X-rays, but are neutral and non-damaging to the surface involved. Kevan's team was able to measure single-slit diffraction patterns as well as speckle patterns made on an irregularly shaped object.

Getting a timely image remains the big obstacle, Kevan said. Images of diffraction patterns produced pixel-by-pixel in the study required hours to accumulate and suffer from thermal stability limitations of the equipment. "We'd like to measure the speckle diffraction patterns in seconds, not a day," he said.

"Given its simplicity, relative low cost, continuous availability, and the unit probability for helium scattering from surfaces, our source will be very competitive in some applications," Kevan and colleagues wrote.

"This atom optical experiment would benefit from developing an 'atom camera,' that would measure the entire speckle pattern in one exposure," they wrote.

Co-authors of the study with Kevan were doctoral students Forest S. Patton and Daniel P. Deponte, both of the department of physics at the University of Oregon, and Greg S. Elliott, a physicist at the University of Puget Sound in Tacoma, Wash.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>