Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country researchers believe methane storms on Titan

28.07.2006
The detailed exploration of Titan with space missions began a couple of years ago and the presence of bright polar clouds and dry riverbeds on this satellite of Saturn has intrigued astronomers ever since.

Doctors Ricardo Hueso and Agustín Sánchez Lavega from the Planetary Sciences Group of the University of the Basque Country (UPV-EHU), based at the Basque Country School of Engineering in Bilbao, have put forward an explanation for the phenomena in the July 2006 edition (Nº 27) Nature. The clouds and dry beds are due to giant storms of methane that occur on Titan. The satellite of Saturn would thus have a “methane cycle”, probably similar to the Earth’s water cycle.

Titan is the largest satellite of the planet Saturn and the second in size of the whole solar system at 5,150 kilometres diameter. It is the only moon in the system with an atmosphere dense in nitrogen, similar to that of the Earth. Titan’s atmosphere has a thick orange cloud of hydrocarbons that impede visibility of its surface, which also makes it different from the rest of the satellites. Moreover, given the enormous distance separating it from the Sun - some 1,500 million kilometres -, the surface temperatures there are icy at 180ºC below zero, any water on it surface will be completely frozen. However, the pictures taken by the Cassini spaceship, orbiting Saturn since July 2004, and the measurements obtained from the Huygens probe, installed in a satellite launched in January 2005, point to the existence of recently formed canals and dried riverbed structures on the surface of this frozen world. If this is the case, we have the first example in the whole solar system – apart from the Earth, that is – where we can regularly find surface deposits of liquid. How can flowing structures be formed in such a frozen atmosphere? Are they formed by rains? If so, what kind?

The research published in Nature by Doctors Ricardo Hueso and Agustín Sánchez Lavega and entitled, ‘Methane storms on Saturn’s moon, Titan’ provides an explanation to these questions that intrigue astronomers. According to these Basque Country University scientists, huge clouds of methane vapour form storms on Titan´s surface, this hydrocarbon compound playing a similar role to that of water on Earth. From calculations carried out, these heavy storms, which can reach a vertical height of 35 kilometres above the surface, produce dense clouds of methane and copious precipitation of liquid drops of the gaseous compound, similar to the intense downpours of rain we experience on Earth. The precipitation generates accumulations and rivers of liquid methane on Titan, producing the canals observed.

The hypothesis formulated by the researchers of the existence of heavy methane storms on Titan is based on the ongoing observations over the last few years from the Cassini craft and by the largest terrestrial telescopes of very localised and bright clouds. One of the most prolific regions where these wide masses of cloud have been found is at the South Pole of the satellite. Despite the low mean temperatures of Titan, the polar region is currently in summer, thus receiving more heat than the rest of the planet and raising the temperature slightly but sufficiently to provide the energy needed to for the stormy episodes. The researchers have found that one of the keys in the development of the storms are the so-called “condensation nuclei” particles that form the orangey cloud and reach the lower atmosphere of Titan. Methane drops form around these particles and give rise to the storm clouds.

The researchers suggest that the methane, present in small quantities in the atmosphere, play a similar role to that of water on Earth although, to date, they have not yet discovered liquid-state deposits on Saturn’s moon. Titan, in this sense, would have a “methane cycle”, similar perhaps to the Earth’s water cycle. In order to confirm their hypothesis of liquid methane formation causing the storms, the UPV/EHU investigators suggest the systematic radar observation with Cassini of the surface in those regions where the formation of the bright white clouds have been observed.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.nature.com/nature/journal/v442/n7101/abs/nature04933.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>