Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country researchers believe methane storms on Titan

28.07.2006
The detailed exploration of Titan with space missions began a couple of years ago and the presence of bright polar clouds and dry riverbeds on this satellite of Saturn has intrigued astronomers ever since.

Doctors Ricardo Hueso and Agustín Sánchez Lavega from the Planetary Sciences Group of the University of the Basque Country (UPV-EHU), based at the Basque Country School of Engineering in Bilbao, have put forward an explanation for the phenomena in the July 2006 edition (Nº 27) Nature. The clouds and dry beds are due to giant storms of methane that occur on Titan. The satellite of Saturn would thus have a “methane cycle”, probably similar to the Earth’s water cycle.

Titan is the largest satellite of the planet Saturn and the second in size of the whole solar system at 5,150 kilometres diameter. It is the only moon in the system with an atmosphere dense in nitrogen, similar to that of the Earth. Titan’s atmosphere has a thick orange cloud of hydrocarbons that impede visibility of its surface, which also makes it different from the rest of the satellites. Moreover, given the enormous distance separating it from the Sun - some 1,500 million kilometres -, the surface temperatures there are icy at 180ºC below zero, any water on it surface will be completely frozen. However, the pictures taken by the Cassini spaceship, orbiting Saturn since July 2004, and the measurements obtained from the Huygens probe, installed in a satellite launched in January 2005, point to the existence of recently formed canals and dried riverbed structures on the surface of this frozen world. If this is the case, we have the first example in the whole solar system – apart from the Earth, that is – where we can regularly find surface deposits of liquid. How can flowing structures be formed in such a frozen atmosphere? Are they formed by rains? If so, what kind?

The research published in Nature by Doctors Ricardo Hueso and Agustín Sánchez Lavega and entitled, ‘Methane storms on Saturn’s moon, Titan’ provides an explanation to these questions that intrigue astronomers. According to these Basque Country University scientists, huge clouds of methane vapour form storms on Titan´s surface, this hydrocarbon compound playing a similar role to that of water on Earth. From calculations carried out, these heavy storms, which can reach a vertical height of 35 kilometres above the surface, produce dense clouds of methane and copious precipitation of liquid drops of the gaseous compound, similar to the intense downpours of rain we experience on Earth. The precipitation generates accumulations and rivers of liquid methane on Titan, producing the canals observed.

The hypothesis formulated by the researchers of the existence of heavy methane storms on Titan is based on the ongoing observations over the last few years from the Cassini craft and by the largest terrestrial telescopes of very localised and bright clouds. One of the most prolific regions where these wide masses of cloud have been found is at the South Pole of the satellite. Despite the low mean temperatures of Titan, the polar region is currently in summer, thus receiving more heat than the rest of the planet and raising the temperature slightly but sufficiently to provide the energy needed to for the stormy episodes. The researchers have found that one of the keys in the development of the storms are the so-called “condensation nuclei” particles that form the orangey cloud and reach the lower atmosphere of Titan. Methane drops form around these particles and give rise to the storm clouds.

The researchers suggest that the methane, present in small quantities in the atmosphere, play a similar role to that of water on Earth although, to date, they have not yet discovered liquid-state deposits on Saturn’s moon. Titan, in this sense, would have a “methane cycle”, similar perhaps to the Earth’s water cycle. In order to confirm their hypothesis of liquid methane formation causing the storms, the UPV/EHU investigators suggest the systematic radar observation with Cassini of the surface in those regions where the formation of the bright white clouds have been observed.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.nature.com/nature/journal/v442/n7101/abs/nature04933.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>