Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where are the supermassive black holes hiding?

27.07.2006
European and American scientists, on a quest to find super-massive black holes hiding in nearby galaxies, have found surprisingly few. Either the black holes are better hidden than scientists realised or they are lurking only in the more distant universe.

Scientists are convinced that some super-massive black holes must be hiding behind thick clouds of dust. These dusty shrouds allow only the highest energy X-rays to shine through. Once in space, the X-rays combine into a cosmic background of X-rays that permeates the whole of space.

The search for hidden black holes is part of the first census of the highest-energy part of the X-ray sky. Led by Loredana Bassani, IASF, Italy, a team of astronomers published results in The Astrophysical Journal Letters in January this year. They show the fraction of hidden black holes in the nearby Universe to be around 15 percent, using data from ESA’s orbiting gamma-ray observation, the International Gamma Ray Astrophysics Laboratory (Integral).

Now astronomers from NASA Goddard Space Flight Center in Greenbelt, Maryland, and the Integral Science Data Centre near Geneva, Switzerland, have found an even smaller fraction using nearly two years of continuous data, also from Integral. The work shows that there is clearly too few hidden black holes in the nearby Universe to create the observed X-ray background radiation.

"Naturally, it is difficult to find something we know is hiding well and which has eluded detection so far," says Volker Beckmann of NASA Goddard and the University of Maryland, Baltimore County, lead author of the new report to be published in an upcoming issue of The Astrophysical Journal. "Integral is a telescope that should see nearby hidden black holes, but we have come up short," he says.

The X-ray sky is thousands to millions of times more energetic than the visible sky familiar to our eyes. Much of the X-ray activity is thought to come from black holes violently sucking in gas from their surroundings.

Recent breakthroughs in X-ray astronomy, including a thorough black hole census taken by NASA's Chandra X-ray Observatory and Rossi X-ray Timing Explorer, have all dealt with lower-energy X-rays. The energy range is roughly 2 000 to 20 000 electron-volts (optical light, in comparison, is about 2 electron-volts). The two Integral surveys are the first glimpse into the largely unexplored higher-energy, or 'hard', X-ray regime of 20 000 to 300 000 electron-volts.

"The X-ray background, this pervasive blanket of X-ray light we see everywhere in the universe, peaks at about 30 000 electron volts, yet we really know next to nothing about what produces this radiation," says Neil Gehrels of NASA Goddard, a co-author.

The theory is that hidden black holes, which scientists call Compton-thick objects, are responsible for the 30 000 electron-volts peak of X-rays in the cosmic X-ray background. Integral is the first satellite sensitive enough to search for them in the local universe.

According to Beckmann, of all the black hole galaxies that Integral detected less than 10 percent were the heavily shrouded 'Compton thick' variety. That has serious implications for explaining where the X-rays in the cosmic X-ray background come from.

"The hidden black holes we have found so far can contribute only a few percent of the power to the cosmic X-ray background," says Bassani. This implies that if hidden black holes make up the bulk of the X-ray background, they must be located much further away in the more distant universe. Why would this be? One reason could be that in the local universe most super-massive black holes have had time to eat or blow away all the gas and dust that once enshrouded them, leaving them revealed.

This would make them less able to produce X-rays because it is the heating of the gas falling into the black hole that generates the X-rays, not the hole itself. So, if the black hole had cleared its surroundings of matter there would be nothing left to produce X-rays.

Conversely, another possibility is that perhaps the hidden black holes are more hidden than astronomers realised. "The fact that we do not see them does not necessarily mean that they are not there, just that we don’t see them. Perhaps they are more deeply hidden than we think and so are therefore below even Integral's detection limit," says Bassani.

Meanwhile, the NASA team is now planning to extend his search for hidden black holes further out into the universe. "This is just the tip of the iceberg. In a few more months we will have a larger survey completed with the Swift mission. Our goal is to push this kind of observation deeper and deeper into the universe to see black hole activity at early epochs. That’s the next great challenge for X-ray and gamma-ray astronomers," concluded Beckmann.

Christoph Winkler | alfa
Further information:
http://www.esa.int/esaSC/SEMGM6BUQPE_index_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>