Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation-Armed Robot Rapidly Destroys Human Lung Tumors

26.07.2006
Super-intense radiation delivered by a robotic arm eradicated lung tumors in some human patients just 3-4 months after treatment, medical physicist Cihat Ozhasoglu, Ph.D. of the University of Pittsburgh Medical Center (ozhasogluc@upmc.edu) will report in early August at the 48th Annual Meeting of the American Association of Physicists in Medicine in Orlando. Although it is too early to determine the technique's long-term effectiveness, Ozhasoglu and his colleagues find promise in this new approach to treat lung cancer and other tumors that move during breathing.

At the University of Pittsburgh, Ozhasoglu and approximately 30 colleagues form one of the largest US teams devoted to the CyberKnife, a radiation delivery system that uses an accurate, precise robotic arm to aim highly focused x-ray beams at the site of a tumor. Currently there are 76 active CyberKnife sites worldwide (with 45 in the US), and an additional 62 scheduled to be installed globally.

Recently, the Pittsburgh researchers upgraded their CyberKnife by adding a system called "Synchrony," which accurately targets tumors that move as a result of breathing. Synchrony instructs the robotic arm to move the radiation source (a linear accelerator that produces x-rays) in sync with the tumor motion.

As a result of the unique real-time tumor tracking capabilities of their upgraded CyberKnife, the researchers have established detailed methods for the safe treatment of lung tumors which otherwise couldn’t be treated with a high dose of radiation due to lack of sufficient real-time tracking accuracy in other, more conventional radiation therapy machines.

Treating lung tumors with the enhanced Cyberknife requires only 1-3 sessions lasting 60-90 minutes. In conventional radiotherapy, patients must endure dozens of radiation treatments, each lasting about 15 minutes but requiring 20-30 hospital visits.

In a single treatment, Cyberknife blasts a lung tumor from all sides by delivering typically 100-150 intense, focused x-ray beams, causing the tumor to absorb approximately 10 times more radiation than in a conventional radiotherapy session. Cyberknife can deliver so much more radiation than other techniques because its robotic arm aims the x-rays precisely enough to avoid surrounding healthy tissue.

To track the moving tumor, the CyberKnife takes real-time x-ray pictures of the patient while using external markers attached to the patient’s chest or abdomen to follow tumors in real time with a few millimeters of accuracy. The researchers also applied Synchrony to treating tumors in the thorax and abdomen, which can move as much as 4 cm during respiration.

Meeting Paper: WE-D-VaIA-4, "Synchrony -- Real-Time Respiratory Compensation system for the CyberKnife," Wednesday, August 2, 2006, 2:20 PM, Room Valencia A. Click Here for Technical Abstract

Presented at: 48th Annual Meeting of the American Association of Physicists in Medicine, July 30-August 3, 2006, Orange County Convention Center, Orlando, FL. Click Here for Meeting Homepage

ABOUT AAPM

AAPM (www.aapm.org) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings.

Ben Stein | EurekAlert!
Further information:
http://www.aapm.org
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>