Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation-Armed Robot Rapidly Destroys Human Lung Tumors

26.07.2006
Super-intense radiation delivered by a robotic arm eradicated lung tumors in some human patients just 3-4 months after treatment, medical physicist Cihat Ozhasoglu, Ph.D. of the University of Pittsburgh Medical Center (ozhasogluc@upmc.edu) will report in early August at the 48th Annual Meeting of the American Association of Physicists in Medicine in Orlando. Although it is too early to determine the technique's long-term effectiveness, Ozhasoglu and his colleagues find promise in this new approach to treat lung cancer and other tumors that move during breathing.

At the University of Pittsburgh, Ozhasoglu and approximately 30 colleagues form one of the largest US teams devoted to the CyberKnife, a radiation delivery system that uses an accurate, precise robotic arm to aim highly focused x-ray beams at the site of a tumor. Currently there are 76 active CyberKnife sites worldwide (with 45 in the US), and an additional 62 scheduled to be installed globally.

Recently, the Pittsburgh researchers upgraded their CyberKnife by adding a system called "Synchrony," which accurately targets tumors that move as a result of breathing. Synchrony instructs the robotic arm to move the radiation source (a linear accelerator that produces x-rays) in sync with the tumor motion.

As a result of the unique real-time tumor tracking capabilities of their upgraded CyberKnife, the researchers have established detailed methods for the safe treatment of lung tumors which otherwise couldn’t be treated with a high dose of radiation due to lack of sufficient real-time tracking accuracy in other, more conventional radiation therapy machines.

Treating lung tumors with the enhanced Cyberknife requires only 1-3 sessions lasting 60-90 minutes. In conventional radiotherapy, patients must endure dozens of radiation treatments, each lasting about 15 minutes but requiring 20-30 hospital visits.

In a single treatment, Cyberknife blasts a lung tumor from all sides by delivering typically 100-150 intense, focused x-ray beams, causing the tumor to absorb approximately 10 times more radiation than in a conventional radiotherapy session. Cyberknife can deliver so much more radiation than other techniques because its robotic arm aims the x-rays precisely enough to avoid surrounding healthy tissue.

To track the moving tumor, the CyberKnife takes real-time x-ray pictures of the patient while using external markers attached to the patient’s chest or abdomen to follow tumors in real time with a few millimeters of accuracy. The researchers also applied Synchrony to treating tumors in the thorax and abdomen, which can move as much as 4 cm during respiration.

Meeting Paper: WE-D-VaIA-4, "Synchrony -- Real-Time Respiratory Compensation system for the CyberKnife," Wednesday, August 2, 2006, 2:20 PM, Room Valencia A. Click Here for Technical Abstract

Presented at: 48th Annual Meeting of the American Association of Physicists in Medicine, July 30-August 3, 2006, Orange County Convention Center, Orlando, FL. Click Here for Meeting Homepage

ABOUT AAPM

AAPM (www.aapm.org) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings.

Ben Stein | EurekAlert!
Further information:
http://www.aapm.org
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>