Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists at the University of the Basque Country succeed in cooling solid material with laser

A team of researchers at the University of the Basque Country (UPV/EHU) have experimentally demonstrated something that other scientists have been trying to achieve for decades: the cooling of erbium-doped materials with laser light.

Joaquín Fernández, Chair at the Department of Applied Physics at the Bilbao School of Engineering, is leading the team consisting of Professor Rolindes Balda and the Ramón y Cajal researcher, Ángel García Adeva. The findings have been published in Physical Review Letters, the most important magazine in its speciality. Atomic, Molecular, and Optical Physics can be viewed at in digital edition and the printed edition (volume 97, 3rd part) will be published next Friday, 21 July.

Optical cooling is a phenomenon that has sparked great interest over the last couple of decades, particularly in the field of the optical cooling of atomic gases (Bose-Einstein condensed (1)). Cooling solids using laser radiation is much more difficult and, in fact, a very small number of doped materials have been cooled, i.e. materials to which a tiny amount of ions of another element have been added. What has never been achieved to date is the cooling of materials doped with erbium.

Erbium is a metal element belonging to the Rare Earth group (2). Its ions have the property whereby when light of a certain wavelength falls on them, they are capable of amplifying them. This effect is used, for example, to construct light amplifiers in the field of optical telecommunications. To this end, in order to compensate for the weakening of the light signal as it journeys down an optic fibre, the fibre is doped with erbium ions.

In the case of the research undertaken by the UPV/EHU team, the luminous emission of erbium has been used to achieve the cooling of material in which these ions are housed by exciting these ions with laser light. This discovery is not only important for the technical difficulties involved, but also because the optical refrigeration of devices doped with erbium occur at wavelengths and potentials similar to those with which conventional diode lasers operate, thus making these materials ideal candidates for possible applications, unlike other doped materials that have previously been cooled. Amongst these applications are high-power optical fibre lasers, medical diagnostic techniques using laser (optical tomography) and phototherapy. These devices would function by means of dual laser pumping in which the light wavelengths would be used for the laser pumping and the other wavelength (close to the previous one) to produce optical cooling that would counteract the heating produced by the laser action. This heating causes a number of adverse effects. It can alter the properties and even burn the material being worked with.

The main reasons why this team of researchers have managed to obtain a net optical cooling of these erbium-doped materials are the extraordinary optical quality of the materials employed and the fact that the losses due to thermal vibrations in these are very small.

(1) Bose-Einstein condensed is an aggregated state of the material that certain materials have at very low temperatures. It is characterised by the property of a macroscopic amount of the particles of the material pass to the level of minimum energy, known as the fundamental state.

(2) Rare Earths: these are elements known as Lantanides and Actinides and have an electronic structure in which the f orbitals are incomplete. Practically all the rare earth elements have radioactive isotopes.

Garazi Andonegi | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>