Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice scientists unveil 'nanoegg'

24.07.2006
Asymmetric particles focus light in unique way

Researchers at Rice University's Laboratory for Nanophotonics (LANP) have unveiled the "nanoegg," the latest addition to their family ultrasmall, light-focusing particles. A cousin of the versatile nanoshell, nanoeggs are asymmetric specks of matter whose striking optical properties can be harnessed for molecular imaging, medical diagnostics, chemical sensing and more.

Nanoeggs are described in the July 18 issue of the Proceedings of the National Academy of Sciences.

Like nanoshells, nanoeggs are about 20 times smaller than a red blood cell, and they can be tuned to focus light on small regions of space. But each nanoegg interacts with more light – about five times the number of wavelengths – than their nanoshell cousins, and their asymmetric structure also allows them to focus more energy on a particular spot.

"The field of nanophotonics is undergoing explosive growth, as researchers gain greater and greater sophistication in the design and manipulation of light-active nanostructures," said LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "The addition of nanoeggs and, earlier this year, nanorice to LANP's family of optical nanoparticles is a direct result of our increased understanding of the interaction between light and matter in this critical size regime."

Like nanoshells, nanoeggs have a spherical, non-conducting core that's covered with a thin metal shell. But where the casing on a nanoshell has a uniform thickness – like the peel covering an orange – the nanoegg's covering is thicker on one side than the other – in much the same way that a hard-boiled egg white is thick in some places and thin in others.

The off-center core in the nanoegg radically changes its electrical properties, said co-author and theoretical physicist Peter Nordlander, professor of physics and astronomy. The reasons for this have to do with the odd and often counterintuitive rules that govern how light interacts with electrons at the nanoscale.

"All metal particles have a sea of free electrons flowing continuously over their surface called plasmons," Nordlander said. "These plasmons slosh around constantly, just like waves in the ocean. Light also travels in waves, and when the wavelength of incoming light matches the wavelength of the plasmon, the amplitude of their sloshing gets bigger and bigger, much like the waves in a bathtub when a child rhythmically sloshes bathwater until it spills out of the tub."

In order for plasmons to be excited by light, the electrons on a particle's surface must behave in such a way as to create a 'dipole moment,' a state marked by two equal but opposite poles, one positive and the other negative – much like a magnet that attracts on one end and repels on the other.

"Without a dipole moment, there is no 'handle' for light to grab hold of," Nordlander said. "In symmetric nanoshells, most of the light energy is lost to these 'dark modes.' With symmetry breaking, we are able to make these dark modes bright by providing dipole moments for more of the incoming light."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>