Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Add nanotubes and stir -- with the right force

24.07.2006
Polymer scientists at the National Institute of Standards and Technology have some stirring results to share with researchers and companies developing new, advanced composite materials with carbon nanotubes--mix carefully.

In a paper for Physical Review Letters,* they explain how the amount of force applied while mixing carbon nanotube suspensions influences the way the tiny cylinders ultimately disperse and orient themselves. In turn, the final arrangement of the nanotubes largely dictates the properties of the resultant materials.

Measuring only a few nanometers in diameter (the width of a handful of atoms), carbon nanotubes possess many superior properties that make them highly desirable additives in composites, a class of engineered materials made by blending polymers and fibers or by combining other types of unlike materials. Mixed in polymeric materials, carbon nanotubes can provide incredible strength, toughness and electrical conductivity. The trouble is, nanotubes stick to each other and form networks that tend to stay fixed in place. Apply enough force, the networks will flow but usually end up in tangled clumps. The resultant nanocomposites are difficult to mold or shape, and their properties fall short of expectations.

In an elegantly simple result, NIST researchers Erik Hobbie and Dan Fry found that networks of carbon nanotubes respond predictably to externally applied force. The networks also showed behavior reminiscent of more conventional materials that align spontaneously under the forces of Brownian motion--the random motion of particles in a fluid famously described mathematically by Einstein.

The response was so predictable that the scientists mapped out the relationship in the form of a phase diagram, the materials science equivalent of a recipe. Using their "phase diagram of sticky nanotube suspensions," other researchers can estimate the order that will result when applying a certain amount of force when mixing a polymer fluid with a particular concentration of nanotubes. The recipe can be used to prevent entanglement and to help achieve the nanotube arrangement and orientation associated with a desired set of properties.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>