Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking deep with infrared eyes

24.07.2006
First data release from UKIRT Infrared Deep Sky Survey

Today, British astronomers are releasing the first data from the largest and most sensitive survey of the heavens in infrared light to the ESO user community. The UKIRT Infrared Deep Sky Survey (UKIDSS) has completed the first of seven years of data collection, studying objects that are too faint to see at visible wavelengths, such as very distant or very cool objects. New data on young galaxies is already challenging current thinking on galaxy formation, revealing galaxies that are massive at a much earlier stage of development than expected. These first science results already show how powerful the full survey will be at finding rare objects that hold vital clues to how stars and galaxies in our Universe formed.

UKIDSS will make an atlas of large areas of the sky in the infrared. The data become available to the entire ESO user community immediately after they are entered into the archive [1]. Release to the world follows 18 months after each release to ESO.

"Astronomers across Europe will jump on these exciting new data. We are moving into new territory - our survey is both wide and deep, so we are mapping huge volumes of space. That's how we will locate rare objects - the very nearest and smallest stars, and young galaxies at the edge of the universe," said Andy Lawrence from the University of Edinburgh, UKIDSS Principal Investigator.

The UKIDSS data are collected by the United Kingdom Infrared Telescope situated near the summit of Mauna Kea in Hawaii using the Wide Field Camera (WFCAM) built by the United Kingdom Astronomy Technology Centre (UKATC) in Edinburgh. WFCAM is the most powerful infrared imager in the world, generating enormous amounts of data - 150 gigabytes per night (equivalent to more than 200 CDs) - and approximately 10.5 Terabytes in total so far (or 15,000 CDs). Mark Casali, now at ESO, was the Project Scientist in charge of the WFCAM instrument construction at the UKATC.

"WFCAM was a bold technological undertaking,” said Mark Casali. “Nothing quite like it has ever been built before. The fact that it is working reliably and reaching its theoretical sensitivity is a testament to the hard work and skill of the engineering team at the UKATC."

A small amount of data was released in January 2006 and already teams led by Omar Almaini at the University of Nottingham and Nigel Hambly of the Institute for Astronomy at the University of Edinburgh are beginning to reveal some of the secrets of star and galaxy formation.

Omar Almaini, Ross McLure and the Ultra Deep Survey team have been looking at distant galaxies by surveying the same region of sky night after night to see deeper and to find these very faint objects. This survey will be one hundred times larger than any similar survey attempted to date and will cover an area four times the size of the full Moon. So far several hundred thousand galaxies have been detected and among the early discoveries, nine remarkable galaxies have been found that appear to be 12 billion light years away. As it has taken 12 billion years for the light to travel from these galaxies to Earth, we are seeing them as they were when they were very young - only a billion years after the Big Bang. The newly discovered galaxies are unusual as they appear to be very massive for their age. This challenges thinking on how galaxies form, since it was thought that large galaxies form gradually over billions of years as smaller components merge together.

"We're surveying an enormous volume of the distant Universe, which allows us to discover rare massive galaxies that were previously almost impossible to find. Understanding how these galaxies form is one of the Holy Grails of modern astronomy, and now we can trace them back to the edge of the known Universe" said Omar Almaini.

Nigel Hambly and Nicolas Lodieu have been using the UKIDSS data to discover more about very cold objects in our Galaxy called brown dwarfs. Brown dwarfs are formed in the same way as stars but have typically less than 8% of the mass of the Sun (or approximately 80 times the mass of Jupiter). This is not large enough for core nuclear reactions to occur, and so brown dwarfs do not shine like normal stars. Brown dwarfs give off less than one ten thousandth of the radiation of a star like our Sun. This relatively tiny amount of heat can be detected by WFCAM and the UKIDSS survey hopes to find out how many of these "failed stars" there are in our Galaxy.

Nigel Hambly, of the UKIDSS Galactic Clusters Survey said: "With UKIDSS, we will find many thousands of brown dwarfs in many different star formation environments within our own Galaxy; furthermore we expect to find even cooler and much dimmer objects than are currently known. This will tell us how significant a role the brown dwarfs have in the overall scheme of Galactic structure and evolution."

Notes

[1] This is a joint PPARC/ESO Press release. The PPARC version is available at http://www.pparc.ac.uk/Nw/ukidss2107.asp
ESO access to the data from the Wide-Field Camera on the UK Infrared Telescope is part of the arrangements agreed for the UK accession to ESO.
[2] Access to the Data Release 1 is through the WFCAM Science Archive at
http://surveys.roe.ac.uk/wsa.
[3] UKIRT is the world's largest telescope dedicated solely to infrared astronomy. The 3.8-metre telescope is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4194 metres above sea level. It is operated by the Joint Astronomy Centre in Hilo, Hawaii, on behalf of the UK Particle Physics and Astronomy Research Council (PPARC).

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-26-06.html

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>