Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking deep with infrared eyes

24.07.2006
First data release from UKIRT Infrared Deep Sky Survey

Today, British astronomers are releasing the first data from the largest and most sensitive survey of the heavens in infrared light to the ESO user community. The UKIRT Infrared Deep Sky Survey (UKIDSS) has completed the first of seven years of data collection, studying objects that are too faint to see at visible wavelengths, such as very distant or very cool objects. New data on young galaxies is already challenging current thinking on galaxy formation, revealing galaxies that are massive at a much earlier stage of development than expected. These first science results already show how powerful the full survey will be at finding rare objects that hold vital clues to how stars and galaxies in our Universe formed.

UKIDSS will make an atlas of large areas of the sky in the infrared. The data become available to the entire ESO user community immediately after they are entered into the archive [1]. Release to the world follows 18 months after each release to ESO.

"Astronomers across Europe will jump on these exciting new data. We are moving into new territory - our survey is both wide and deep, so we are mapping huge volumes of space. That's how we will locate rare objects - the very nearest and smallest stars, and young galaxies at the edge of the universe," said Andy Lawrence from the University of Edinburgh, UKIDSS Principal Investigator.

The UKIDSS data are collected by the United Kingdom Infrared Telescope situated near the summit of Mauna Kea in Hawaii using the Wide Field Camera (WFCAM) built by the United Kingdom Astronomy Technology Centre (UKATC) in Edinburgh. WFCAM is the most powerful infrared imager in the world, generating enormous amounts of data - 150 gigabytes per night (equivalent to more than 200 CDs) - and approximately 10.5 Terabytes in total so far (or 15,000 CDs). Mark Casali, now at ESO, was the Project Scientist in charge of the WFCAM instrument construction at the UKATC.

"WFCAM was a bold technological undertaking,” said Mark Casali. “Nothing quite like it has ever been built before. The fact that it is working reliably and reaching its theoretical sensitivity is a testament to the hard work and skill of the engineering team at the UKATC."

A small amount of data was released in January 2006 and already teams led by Omar Almaini at the University of Nottingham and Nigel Hambly of the Institute for Astronomy at the University of Edinburgh are beginning to reveal some of the secrets of star and galaxy formation.

Omar Almaini, Ross McLure and the Ultra Deep Survey team have been looking at distant galaxies by surveying the same region of sky night after night to see deeper and to find these very faint objects. This survey will be one hundred times larger than any similar survey attempted to date and will cover an area four times the size of the full Moon. So far several hundred thousand galaxies have been detected and among the early discoveries, nine remarkable galaxies have been found that appear to be 12 billion light years away. As it has taken 12 billion years for the light to travel from these galaxies to Earth, we are seeing them as they were when they were very young - only a billion years after the Big Bang. The newly discovered galaxies are unusual as they appear to be very massive for their age. This challenges thinking on how galaxies form, since it was thought that large galaxies form gradually over billions of years as smaller components merge together.

"We're surveying an enormous volume of the distant Universe, which allows us to discover rare massive galaxies that were previously almost impossible to find. Understanding how these galaxies form is one of the Holy Grails of modern astronomy, and now we can trace them back to the edge of the known Universe" said Omar Almaini.

Nigel Hambly and Nicolas Lodieu have been using the UKIDSS data to discover more about very cold objects in our Galaxy called brown dwarfs. Brown dwarfs are formed in the same way as stars but have typically less than 8% of the mass of the Sun (or approximately 80 times the mass of Jupiter). This is not large enough for core nuclear reactions to occur, and so brown dwarfs do not shine like normal stars. Brown dwarfs give off less than one ten thousandth of the radiation of a star like our Sun. This relatively tiny amount of heat can be detected by WFCAM and the UKIDSS survey hopes to find out how many of these "failed stars" there are in our Galaxy.

Nigel Hambly, of the UKIDSS Galactic Clusters Survey said: "With UKIDSS, we will find many thousands of brown dwarfs in many different star formation environments within our own Galaxy; furthermore we expect to find even cooler and much dimmer objects than are currently known. This will tell us how significant a role the brown dwarfs have in the overall scheme of Galactic structure and evolution."

Notes

[1] This is a joint PPARC/ESO Press release. The PPARC version is available at http://www.pparc.ac.uk/Nw/ukidss2107.asp
ESO access to the data from the Wide-Field Camera on the UK Infrared Telescope is part of the arrangements agreed for the UK accession to ESO.
[2] Access to the Data Release 1 is through the WFCAM Science Archive at
http://surveys.roe.ac.uk/wsa.
[3] UKIRT is the world's largest telescope dedicated solely to infrared astronomy. The 3.8-metre telescope is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4194 metres above sea level. It is operated by the Joint Astronomy Centre in Hilo, Hawaii, on behalf of the UK Particle Physics and Astronomy Research Council (PPARC).

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-26-06.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>