Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green light for the marketing of the first superconductive cyclotron for hadrontherapy

The agreement between the Italian National Institute for Nuclear Physics and the Belgian firm Iba for the marketing, in biomedical field, of the first superconductive cyclotron producing protons and carbon ions as well, has been made official today. The innovative project, that will developed by the Infn Southern National Laboratories and realized with the contribution of the Iba specific twenty-year experience in the field of cyclotrons for medical applications, was conceived for the hospital centres of oncological hadrontherapy.

Hadrontherapy is one of the most refined radiotherapic technique for tumours treatment. It uses hadrons, that is to say charged particles made up from quarks, as protons and ions. These particles, contrary to what occurs in radiotherapy, can be directed with precision against the tumour mass, with minimum risks to hit vital organs and surrounding healthy tissues. In particular ions have a higher radiobiological effect: they can hit in fact deep tumours, for this reason they are particular indicated for radioresistent tumours, such as cerebral tumours, the ones of the head-neck area and lung and pancreas carcinoma. Therapy with protons is instead indicated for tumours located near organs at risk, such as eye, head base, or along the backbone, because they allow to direct the beam form in a more refined way.

Up today the only instruments able to produce protons and ions as well for hadrontherapy are synchrotrons: accelerators machines, much more complex, bulkier and expensive than cyclotrons. A synchrotron consists indeed of a ring with a diameter of at least 25 metres, while a cyclotron is a compact instrument with a diameter of 5 metres and with a considerably lower cost. In the context of its studies for the development of new syncrotrons, Infn has worked for the development of a multiparticle cyclotron, able to provide protons and carbon ions with the energy required for hadrontherapic treatments. "The new cyclotron offers a great technological advantage. Thanks to it, for the first time a doctor will have the opportunity to choose to produce ions or protons, according to the kind of tumour, with a compact, easily to manage and decidedly cheaper instrument than the traditional one. With the ions produced by this new machine, it will possible to treat tumours at a maximum depth of 18 centimetres", explain Giacomo Cuttone and Luciano Calabretta of Infn Southern National Laboratories.

There are in the world several centres for hadrontherapy, most of all in Japan and in the United States. In Italy there is the sperimental project Catana (Hadrontherapy Centre and Advanced Nuclear Applications). Started at the Infn Southern National Laboratories in cooperation with Catania University, Catana is dedicated to the treatment with protons of eye tumour (up today the treated patients are 112). Concerning hadrontherapy with ions, there are in Europe two structures under construction: one is the Heidelberg University clinic, in Germany, the other is the National Centre of Hadrontherapy that will rise in Pavia, from the collaboration between the Cnao foundation and Infn.

The new cyclotron developed by Infn and realized by Iba will be able to enrich the therapeutic power of hadrontherapy centres.

Barbara Gallavotti | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>