Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green light for the marketing of the first superconductive cyclotron for hadrontherapy

24.07.2006
The agreement between the Italian National Institute for Nuclear Physics and the Belgian firm Iba for the marketing, in biomedical field, of the first superconductive cyclotron producing protons and carbon ions as well, has been made official today. The innovative project, that will developed by the Infn Southern National Laboratories and realized with the contribution of the Iba specific twenty-year experience in the field of cyclotrons for medical applications, was conceived for the hospital centres of oncological hadrontherapy.

Hadrontherapy is one of the most refined radiotherapic technique for tumours treatment. It uses hadrons, that is to say charged particles made up from quarks, as protons and ions. These particles, contrary to what occurs in radiotherapy, can be directed with precision against the tumour mass, with minimum risks to hit vital organs and surrounding healthy tissues. In particular ions have a higher radiobiological effect: they can hit in fact deep tumours, for this reason they are particular indicated for radioresistent tumours, such as cerebral tumours, the ones of the head-neck area and lung and pancreas carcinoma. Therapy with protons is instead indicated for tumours located near organs at risk, such as eye, head base, or along the backbone, because they allow to direct the beam form in a more refined way.

Up today the only instruments able to produce protons and ions as well for hadrontherapy are synchrotrons: accelerators machines, much more complex, bulkier and expensive than cyclotrons. A synchrotron consists indeed of a ring with a diameter of at least 25 metres, while a cyclotron is a compact instrument with a diameter of 5 metres and with a considerably lower cost. In the context of its studies for the development of new syncrotrons, Infn has worked for the development of a multiparticle cyclotron, able to provide protons and carbon ions with the energy required for hadrontherapic treatments. "The new cyclotron offers a great technological advantage. Thanks to it, for the first time a doctor will have the opportunity to choose to produce ions or protons, according to the kind of tumour, with a compact, easily to manage and decidedly cheaper instrument than the traditional one. With the ions produced by this new machine, it will possible to treat tumours at a maximum depth of 18 centimetres", explain Giacomo Cuttone and Luciano Calabretta of Infn Southern National Laboratories.

There are in the world several centres for hadrontherapy, most of all in Japan and in the United States. In Italy there is the sperimental project Catana (Hadrontherapy Centre and Advanced Nuclear Applications). Started at the Infn Southern National Laboratories in cooperation with Catania University, Catana is dedicated to the treatment with protons of eye tumour (up today the treated patients are 112). Concerning hadrontherapy with ions, there are in Europe two structures under construction: one is the Heidelberg University clinic, in Germany, the other is the National Centre of Hadrontherapy that will rise in Pavia, from the collaboration between the Cnao foundation and Infn.

The new cyclotron developed by Infn and realized by Iba will be able to enrich the therapeutic power of hadrontherapy centres.

Barbara Gallavotti | alfa
Further information:
http://www.presid.infn.it

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>