Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green light for the marketing of the first superconductive cyclotron for hadrontherapy

24.07.2006
The agreement between the Italian National Institute for Nuclear Physics and the Belgian firm Iba for the marketing, in biomedical field, of the first superconductive cyclotron producing protons and carbon ions as well, has been made official today. The innovative project, that will developed by the Infn Southern National Laboratories and realized with the contribution of the Iba specific twenty-year experience in the field of cyclotrons for medical applications, was conceived for the hospital centres of oncological hadrontherapy.

Hadrontherapy is one of the most refined radiotherapic technique for tumours treatment. It uses hadrons, that is to say charged particles made up from quarks, as protons and ions. These particles, contrary to what occurs in radiotherapy, can be directed with precision against the tumour mass, with minimum risks to hit vital organs and surrounding healthy tissues. In particular ions have a higher radiobiological effect: they can hit in fact deep tumours, for this reason they are particular indicated for radioresistent tumours, such as cerebral tumours, the ones of the head-neck area and lung and pancreas carcinoma. Therapy with protons is instead indicated for tumours located near organs at risk, such as eye, head base, or along the backbone, because they allow to direct the beam form in a more refined way.

Up today the only instruments able to produce protons and ions as well for hadrontherapy are synchrotrons: accelerators machines, much more complex, bulkier and expensive than cyclotrons. A synchrotron consists indeed of a ring with a diameter of at least 25 metres, while a cyclotron is a compact instrument with a diameter of 5 metres and with a considerably lower cost. In the context of its studies for the development of new syncrotrons, Infn has worked for the development of a multiparticle cyclotron, able to provide protons and carbon ions with the energy required for hadrontherapic treatments. "The new cyclotron offers a great technological advantage. Thanks to it, for the first time a doctor will have the opportunity to choose to produce ions or protons, according to the kind of tumour, with a compact, easily to manage and decidedly cheaper instrument than the traditional one. With the ions produced by this new machine, it will possible to treat tumours at a maximum depth of 18 centimetres", explain Giacomo Cuttone and Luciano Calabretta of Infn Southern National Laboratories.

There are in the world several centres for hadrontherapy, most of all in Japan and in the United States. In Italy there is the sperimental project Catana (Hadrontherapy Centre and Advanced Nuclear Applications). Started at the Infn Southern National Laboratories in cooperation with Catania University, Catana is dedicated to the treatment with protons of eye tumour (up today the treated patients are 112). Concerning hadrontherapy with ions, there are in Europe two structures under construction: one is the Heidelberg University clinic, in Germany, the other is the National Centre of Hadrontherapy that will rise in Pavia, from the collaboration between the Cnao foundation and Infn.

The new cyclotron developed by Infn and realized by Iba will be able to enrich the therapeutic power of hadrontherapy centres.

Barbara Gallavotti | alfa
Further information:
http://www.presid.infn.it

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>