Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster hits the magnetic bull’s-eye

19.07.2006
ESA's spacecraft constellation Cluster has hit the magnetic bull's-eye. The four spacecraft surrounded a region within which the Earth’s magnetic field was spontaneously reconfiguring itself.
This is the first time such an observation has been made and gives astronomers a unique insight into the physical process responsible for the most powerful explosions that can occur in the Solar System: the magnetic reconnection.

When looking at the static pattern of iron filings around a bar magnet, it is difficult to imagine how changeable and violent magnetic fields can be in other situations.

In space, different regions of magnetism behave somewhat like large magnetic bubbles, each containing electrified gas known as plasma. When the bubbles meet and are pushed together, their magnetic fields can break and reconnect, forming a more stable magnetic configuration. This reconnection of magnetic fields generates jets of particles and heats the plasma.

At the very heart of a reconnection event, there must be a three dimensional zone where the magnetic fields break and reconnect. Scientists call this region the null point but, until now, have never been able to positively identify one, as it requires at least four simultaneous points of measurements.

On 15 September 2001, the four Cluster spacecraft were passing behind the Earth. They were flying in a tetrahedral formation with separations between the spacecraft of over 1 000 kilometres. As they flew through the Earth’s magnetotail, which stretches out behind the night-time side of our planet, they surrounded one of the suspected null points.

The data returned by the spacecraft have been extensively analysed by an international team of scientists led by Dr. C. Xiao from Chinese Academy of Sciences, Prof. Pu from Peking University, Prof. Wang from Dalian University of Technogy. Xiao and his colleagues used the Cluster data to deduce the three-dimensional structure and size of the null point, revealing a surprise.

The null point exists in an unexpected vortex structure about 500 kilometres across. "This characteristic size has never been reported before in observations, theory or simulations," say Xiao, Pu and Wang.

This result is a major achievement for the Cluster mission as it gives scientists their first look at the very heart of the reconnection process.

Throughout the Universe, magnetic reconnection is thought to be a fundamental process that drives many powerful phenomena, such as the jets of radiation seen escaping from distant black holes, and the powerful solar flares in our own Solar system that can release more energy than a billion atomic bombs.

On a smaller scale, reconnection at the dayside boundary of the Earth’s magnetic field allows solar gas through, triggering a specific type of aurora called 'proton aurora'.

Understanding what sparks magnetic reconnection will also help scientists trying to harness nuclear fusion for energy production. In tokamak fusion reactors, spontaneous magnetic reconfigurations rob the process of its controllability. By understanding how magnetic fields reconnect, fusion scientists hope to be able to design better reactors that prevent this from taking place.

Having identified one null point, the team now hopes to score future bull’s-eyes to compare nulls and see whether their first detection possessed a configuration that is rare or common.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMAYXAUQPE_index_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>