Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics to the rescue of the fresco

18.07.2006
When Florence was hit by disastrous floods in 1966, art conservation experts rushed to the city to save as many priceless pieces of art as they could. Now Florentine scientists have developed a tool to help restorers preserve Italy’s many precious fresco paintings without causing any damage to the paint itself, an Institute of Physics journal reports today.

Frescoes face two main hazards: moisture from the atmosphere and salts in the plaster of the wall on which Renaissance masters made their original paintings. The new tool can measure both moisture and salt content to a depth of two centimetres below the surface. This information could be vital to restorers in deciding the best way to save a painting.

The tool is called SUSI - Sensore di Umidita e Salinita Integrato - which literally means “sensor for humidity and salinity integrated”.

It is a computer-based portable sensor system designed to “feel” below the surface of a 500-year-old work of art. "Moisture and salts are the nemesis of frescoes, and their presence should be detected before damage become too serious", said Roberto Olmi, who led the team of physicists that developed SUSI at the National Research Council in Florence, Italy. "At the beginning of twentieth century, for example, in order to save the paintings a technique used by restorers here in Italy has been to detach the whole thing from the wall and mount it on a wooden board called a Masonite support. An early detection of moisture behind the paintings using SUSI would have avoided such an invasive and dangerous procedure."

Fresco means “fresh” and fresco painting was a test of an artist’s skill: he and his pupils had to get their water based pigments onto the newly-plastered walls before the plaster dried: only then could the painting stick. But the twin threats of time and tourism have over the centuries helped to deface their legacy.

Moisture can damage a fresco in two ways. Water flows to the surface and evaporates, taking bits of the paint with it. Water can also transport soluble salts from the plaster of the wall to the surface, where they crystallise. Eventually the painting whitens and begins to fall off the wall. Until now, measurements of the water and salt content of a fresco have only been possible by taking samples of the paint or drilling holes through the painting to obtain a sample of wall plaster. Paradoxically, just to assess a painting’s condition, researchers had first to damage it a little. The new SUSI tool could now offer researchers the opportunity to obtain the data they need without damaging the fresco.

The surface of the painting is scanned with a sensor device the size of a video camera. Water and salt molecules in the plaster absorb the microwave radiation: then the scanner registers the returning signal and the computer determines the level of moisture or salinity. The equipment was developed over two years, first in a laboratory using plaster samples prepared by the restorers of the Opificio delle Pietre Dure – the Factory of Hard Stones - and then on real frescoes, mainly in Florence.

So far the scientists have tested their new detector on such frescoes as the Paradise Wall of the chapel of Santa Maria Maddalena de Pazzi, painted by the studio of Giotto; and the frescoes in the cloister of St Antonino at the Convent of St Mark, painted by Bernardino Pocetti, both in Florence.

The technology could be versatile, says Dr Olmi. “We have also started to refine the device for use on other types of art. For example, we have used SUSI to measure the humidity and salt content of the famous Robbiane ceramics in the sanctuary of La Verna in Arezzo. However, paintings and old parchment are too thin for the device at the moment and we will need to refine it before we can use it on these kinds of works.”

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/0957-0233/17/8/032

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>