Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics to the rescue of the fresco

18.07.2006
When Florence was hit by disastrous floods in 1966, art conservation experts rushed to the city to save as many priceless pieces of art as they could. Now Florentine scientists have developed a tool to help restorers preserve Italy’s many precious fresco paintings without causing any damage to the paint itself, an Institute of Physics journal reports today.

Frescoes face two main hazards: moisture from the atmosphere and salts in the plaster of the wall on which Renaissance masters made their original paintings. The new tool can measure both moisture and salt content to a depth of two centimetres below the surface. This information could be vital to restorers in deciding the best way to save a painting.

The tool is called SUSI - Sensore di Umidita e Salinita Integrato - which literally means “sensor for humidity and salinity integrated”.

It is a computer-based portable sensor system designed to “feel” below the surface of a 500-year-old work of art. "Moisture and salts are the nemesis of frescoes, and their presence should be detected before damage become too serious", said Roberto Olmi, who led the team of physicists that developed SUSI at the National Research Council in Florence, Italy. "At the beginning of twentieth century, for example, in order to save the paintings a technique used by restorers here in Italy has been to detach the whole thing from the wall and mount it on a wooden board called a Masonite support. An early detection of moisture behind the paintings using SUSI would have avoided such an invasive and dangerous procedure."

Fresco means “fresh” and fresco painting was a test of an artist’s skill: he and his pupils had to get their water based pigments onto the newly-plastered walls before the plaster dried: only then could the painting stick. But the twin threats of time and tourism have over the centuries helped to deface their legacy.

Moisture can damage a fresco in two ways. Water flows to the surface and evaporates, taking bits of the paint with it. Water can also transport soluble salts from the plaster of the wall to the surface, where they crystallise. Eventually the painting whitens and begins to fall off the wall. Until now, measurements of the water and salt content of a fresco have only been possible by taking samples of the paint or drilling holes through the painting to obtain a sample of wall plaster. Paradoxically, just to assess a painting’s condition, researchers had first to damage it a little. The new SUSI tool could now offer researchers the opportunity to obtain the data they need without damaging the fresco.

The surface of the painting is scanned with a sensor device the size of a video camera. Water and salt molecules in the plaster absorb the microwave radiation: then the scanner registers the returning signal and the computer determines the level of moisture or salinity. The equipment was developed over two years, first in a laboratory using plaster samples prepared by the restorers of the Opificio delle Pietre Dure – the Factory of Hard Stones - and then on real frescoes, mainly in Florence.

So far the scientists have tested their new detector on such frescoes as the Paradise Wall of the chapel of Santa Maria Maddalena de Pazzi, painted by the studio of Giotto; and the frescoes in the cloister of St Antonino at the Convent of St Mark, painted by Bernardino Pocetti, both in Florence.

The technology could be versatile, says Dr Olmi. “We have also started to refine the device for use on other types of art. For example, we have used SUSI to measure the humidity and salt content of the famous Robbiane ceramics in the sanctuary of La Verna in Arezzo. However, paintings and old parchment are too thin for the device at the moment and we will need to refine it before we can use it on these kinds of works.”

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/0957-0233/17/8/032

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>