Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Sun’s fiery outbursts – seen in 3D STEREO Prepares for Launch!

18.07.2006
UK solar scientists are eagerly awaiting the launch of NASA’s STEREO mission which will provide the first ever 3D views of the Sun. STEREO (Solar TErrestrial RElations Observatory) comprises two nearly identical observatories that will orbit the Sun to monitor its violent outbursts – Coronal Mass Ejections (CMEs) – and the ‘space weather’ it creates that can impact the Earth, satellites and astronauts. STEREO is due for launch on August 1st 2006.

Professor Richard Harrison of the CCLRC Rutherford Appleton Laboratory (RAL), part of the UK team working on STEREO said “Whilst our Sun may seem a calm familiar object in the sky, in reality it is rather more manic! It generates constantly changing knots of magnetic fields that twist and churn and, occasionally, snap like an over-stretched rubber band producing CME outbursts. At the moment, we cannot recognise the tell-tale signals that precede an outburst, but we expect STEREO will change that.”

In order to understand and, most importantly, predict and protect against the effects of the Sun’s outbursts, such as CMEs, we need to monitor our parent star very closely. CMEs are powerful eruptions that can blow up to 10 billion tonnes of material from the Sun’s atmosphere into space. Typically, CMEs send about 1 billion tonnes of material into space, travelling at one million miles per hour. They can create major disturbances in the interplanetary medium (the dust, plasma and gas in the space between the planets) and if they reach Earth, trigger severe magnetic storms that affect satellites, communications, power grids and aircraft. CME-driven shocks also play a significant role in accelerating solar energetic particles that can damage spacecraft and harm astronauts. Despite their significance, scientists don’t fully understand the origin and evolution of CMEs yet.

Dr Chris Davis, also of RAL, said “Understanding CMEs is key to the future of human activities in space, including the many activities in daily life that rely on communication and navigation satellites. As satellite technology becomes more miniaturised, the smaller microchips are actually more vulnerable to “killer electrons” – the very energetic particles that a CME shock can produce.”

STEREO will provide key data on CMEs and will be the first mission to watch CMEs directly as they head towards the Earth (which can happen as frequently as 4 times a week during the active phase of the Sun’s cycle). STEREO comprises two nearly identical observatories that will be placed in orbits almost the same as that of the Earth around the Sun (their orbits will be 346 and 388 days).

Dr Chris Eyles of the University of Birmingam said “One spacecraft will slowly move ahead of the Earth, the other lag behind - the resulting offset will allow the two spacecraft to have ‘depth perception’ and give them stereo vision such as humans have.”

UK scientists and engineers have contributed to STEREO by building the HI (Heliospheric Imager) cameras for the SECCHI (see Notes below) package on each observatory. HI is a wide angled imaging system (meaning it has a broad field of view) and will be studying how CMEs propagate, particularly those that are likely to affect the Earth. HI was funded by the Particle Physics and Astronomy Research Council investment of £1.88million. CCLRC Rutherford Appleton Laboratory is responsible for the scientific exploitation of the heliospheric imagers as well as providing the detectors used in all of STEREO's camera systems. Both heliospheric imagers were built in the UK at the University of Birmingham.

Commenting on the mission objectives, PPARC’s CEO Professor Keith Mason said “Predicting the timing and strength of solar eruptions is clearly important if we want to mitigate the threat of CMEs and STEREO’s twin observatories will be our sentinels, providing a unique insight into the evolution of these huge outbursts.”

Professor Mason added “The UK has a strong history in solar physics and STEREO builds on the legacy of extremely successful satellites such as YOHKOH and SOHO, which have changed our understanding of the Earth’s parent star. The STEREO mission is a prime example of how we can make the most of British expertise by joining with international agencies such as NASA.”

Jill Little | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>