Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham To Supply Key Equipment For UK's Diamond Particle Accelerator

18.07.2006
Durham University scientists are making a vital piece of equipment - a soft X-ray diffractometer - for observing the behaviour of electrons in the UK’s largest science project for 30 years.

Professor Peter Hatton and colleagues in the Physics Department at Durham have been awarded £900,000 to design and build a soft X-ray diffractometer – an essential component of the new Diamond research complex that will enable scientists to examine and test materials at a super-microscopic level – down to their basic atoms and particles.

Prof Hatton developed the new technique of Resonant soft X-ray Diffraction during his research as a Sir James Knott University Foundation Fellow at Durham. The process allows scientists to see the complex behaviour of electrons in solids and is important in developing new high-density memory devices for computers, new magnetic materials and sensors, and understanding magnetic superconductors

In a consortium with colleagues Professor Brian Tanner and Dr Tom Hase, Prof Hatton secured funding from the Facility Development Board of the Council for the Central Laboratory of the Research Councils (CCLRC), which is constructing the Diamond facility. The award is one of the largest grants made by CCLRC to a University, and is one of several high value grants won by condensed matter physics staff at Durham in the past two years.

Prof Hatton explained: “Durham scientists are playing a leading role in the design and construction, and will ultimately be users, of Diamond – a vast new national facility. Diamond is a synchrotron: a particle accelerator that will produce X-rays a 100 billion times brighter than hospital X-ray machines. These beams will allow us to look deep into the basic structure of matter and materials. “

The Durham-supplied soft X-ray diffractometer will be housed in a high vacuum chamber (soft, or low energy, X-rays cannot pass even through air) equipped with cryogenic and magnetic field environments.

The Diamond complex, which has been built in South Oxfordshire, is a 235m diameter doughnut-shaped building, covering the area of 5 football pitches. It is specially designed to be ultra-stable to prevent any vibration that could disturb the extremely fine beams of electrons that will be accelerated around its ring system. Equipment, including the Durham diffractometer, is being installed in stages. The complex will house up to 40 locations for setting up experiments as part of research in life, physical and environmental sciences

Diamond, which is funded by the government and the Wellcome Trust is due to open later this year at a total cost of about £300m.

Keith Seacroft | alfa
Further information:
http://www.diamond.ac.uk/default.htm

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>