Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham To Supply Key Equipment For UK's Diamond Particle Accelerator

18.07.2006
Durham University scientists are making a vital piece of equipment - a soft X-ray diffractometer - for observing the behaviour of electrons in the UK’s largest science project for 30 years.

Professor Peter Hatton and colleagues in the Physics Department at Durham have been awarded £900,000 to design and build a soft X-ray diffractometer – an essential component of the new Diamond research complex that will enable scientists to examine and test materials at a super-microscopic level – down to their basic atoms and particles.

Prof Hatton developed the new technique of Resonant soft X-ray Diffraction during his research as a Sir James Knott University Foundation Fellow at Durham. The process allows scientists to see the complex behaviour of electrons in solids and is important in developing new high-density memory devices for computers, new magnetic materials and sensors, and understanding magnetic superconductors

In a consortium with colleagues Professor Brian Tanner and Dr Tom Hase, Prof Hatton secured funding from the Facility Development Board of the Council for the Central Laboratory of the Research Councils (CCLRC), which is constructing the Diamond facility. The award is one of the largest grants made by CCLRC to a University, and is one of several high value grants won by condensed matter physics staff at Durham in the past two years.

Prof Hatton explained: “Durham scientists are playing a leading role in the design and construction, and will ultimately be users, of Diamond – a vast new national facility. Diamond is a synchrotron: a particle accelerator that will produce X-rays a 100 billion times brighter than hospital X-ray machines. These beams will allow us to look deep into the basic structure of matter and materials. “

The Durham-supplied soft X-ray diffractometer will be housed in a high vacuum chamber (soft, or low energy, X-rays cannot pass even through air) equipped with cryogenic and magnetic field environments.

The Diamond complex, which has been built in South Oxfordshire, is a 235m diameter doughnut-shaped building, covering the area of 5 football pitches. It is specially designed to be ultra-stable to prevent any vibration that could disturb the extremely fine beams of electrons that will be accelerated around its ring system. Equipment, including the Durham diffractometer, is being installed in stages. The complex will house up to 40 locations for setting up experiments as part of research in life, physical and environmental sciences

Diamond, which is funded by the government and the Wellcome Trust is due to open later this year at a total cost of about £300m.

Keith Seacroft | alfa
Further information:
http://www.diamond.ac.uk/default.htm

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>