Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury atomic clock keeps time with record accuracy

17.07.2006
An experimental atomic clock based on a single mercury atom is now at least five times more precise than the national standard clock based on a "fountain" of cesium atoms, according to a paper by physicists at the Commerce Department's National Institute of Standards and Technology (NIST) in the July 14 issue of Physical Review Letters.

The experimental clock, which measures the oscillations of a mercury ion (an electrically charged atom) held in an ultra-cold electromagnetic trap, produces "ticks" at optical frequencies. Optical frequencies are much higher than the microwave frequencies measured in cesium atoms in NIST-F1, the national standard and one of the world's most accurate clocks. Higher frequencies allow time to be divided into smaller units, which increases precision.

A prototype mercury optical clock was originally demonstrated at NIST in 2000. Over the last five years its absolute frequency has been measured repeatedly with respect to NIST-F1. The improved version of the mercury clock is the most accurate to date of any atomic clock, including a variety of experimental optical clocks using different atoms and designs.

The current version of NIST-F1--if it were operated continuously--would neither gain nor lose a second in about 70 million years. The latest version of the mercury clock would neither gain nor lose a second in about 400 million years.

"We finally have addressed the issue of systemic perturbations in the mercury clock. They can be controlled, and we know their uncertainties," says NIST physicist Jim Bergquist, the principal investigator. "By measuring its frequency with respect to the primary standard, NIST-F1, we have been able to realize the most accurate absolute measurement of an optical frequency to date. And in the latest measurement, we have also established that the accuracy of the mercury-ion system is at a level superior to that of the best cesium clocks."

Improved time and frequency standards have many applications. For instance, ultra-precise clocks can be used to improve synchronization in navigation and positioning systems, telecommunications networks, and wireless and deep-space communications. Better frequency standards can be used to improve probes of magnetic and gravitational fields for security and medical applications, and to measure whether "fundamental constants" used in scientific research might be varying over time--a question that has enormous implications for understanding the origins and ultimate fate of the universe.

Scientists have long recognized that optical atomic clocks could be more stable and accurate than cesium microwave clocks, which have kept world time for more than 50 years. Even with the latest results at NIST, however, optical clocks based on mercury, strontium or other atoms remain a long way from being accepted as standards. Research groups around the world would first need to agree on an atom and clock design to be used internationally.

In addition, a system of additional optical clocks would be needed to continuously keep time, because primary standard clocks--such as the mercury ion or other future optical standard--are generally operated only periodically for calibrations. NIST-F1, for instance, is operated several times a year for periods of about one month to calibrate the frequencies of several NIST microwave atomic clocks that continuously track current time. These clocks contribute to an international group of atomic clocks that define the official world time.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>