Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury atomic clock keeps time with record accuracy

17.07.2006
An experimental atomic clock based on a single mercury atom is now at least five times more precise than the national standard clock based on a "fountain" of cesium atoms, according to a paper by physicists at the Commerce Department's National Institute of Standards and Technology (NIST) in the July 14 issue of Physical Review Letters.

The experimental clock, which measures the oscillations of a mercury ion (an electrically charged atom) held in an ultra-cold electromagnetic trap, produces "ticks" at optical frequencies. Optical frequencies are much higher than the microwave frequencies measured in cesium atoms in NIST-F1, the national standard and one of the world's most accurate clocks. Higher frequencies allow time to be divided into smaller units, which increases precision.

A prototype mercury optical clock was originally demonstrated at NIST in 2000. Over the last five years its absolute frequency has been measured repeatedly with respect to NIST-F1. The improved version of the mercury clock is the most accurate to date of any atomic clock, including a variety of experimental optical clocks using different atoms and designs.

The current version of NIST-F1--if it were operated continuously--would neither gain nor lose a second in about 70 million years. The latest version of the mercury clock would neither gain nor lose a second in about 400 million years.

"We finally have addressed the issue of systemic perturbations in the mercury clock. They can be controlled, and we know their uncertainties," says NIST physicist Jim Bergquist, the principal investigator. "By measuring its frequency with respect to the primary standard, NIST-F1, we have been able to realize the most accurate absolute measurement of an optical frequency to date. And in the latest measurement, we have also established that the accuracy of the mercury-ion system is at a level superior to that of the best cesium clocks."

Improved time and frequency standards have many applications. For instance, ultra-precise clocks can be used to improve synchronization in navigation and positioning systems, telecommunications networks, and wireless and deep-space communications. Better frequency standards can be used to improve probes of magnetic and gravitational fields for security and medical applications, and to measure whether "fundamental constants" used in scientific research might be varying over time--a question that has enormous implications for understanding the origins and ultimate fate of the universe.

Scientists have long recognized that optical atomic clocks could be more stable and accurate than cesium microwave clocks, which have kept world time for more than 50 years. Even with the latest results at NIST, however, optical clocks based on mercury, strontium or other atoms remain a long way from being accepted as standards. Research groups around the world would first need to agree on an atom and clock design to be used internationally.

In addition, a system of additional optical clocks would be needed to continuously keep time, because primary standard clocks--such as the mercury ion or other future optical standard--are generally operated only periodically for calibrations. NIST-F1, for instance, is operated several times a year for periods of about one month to calibrate the frequencies of several NIST microwave atomic clocks that continuously track current time. These clocks contribute to an international group of atomic clocks that define the official world time.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>