Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


After the Big Bang: Project Explores Seconds that Shaped the Universe

Kent State faculty and graduate students are among a team of physicists who recreated the material essence of the universe as it would have been mere microseconds after the Big Bang—a quark-gluon plasma.

This huge insight allows scientists to study matter in its earliest form and comes from an experiment carried out over the past five years at the Relativistic Heavy Ion Collider (RHIC), the giant crusher of nuclei located at Brookhaven National Lab, where scientists created a toy version of the cosmos amid high-energy collisions. Kent State is playing a vital role in this ongoing research partnership, which includes the University of California-Berkley, Massachusetts Institute of Technology, and the Academy of Sciences Nuclear Physics Institute.

At the fundamental level, this research advances our understanding of what the universe is really made of and how the early universe evolved into the universe as we now know it. In addition, the development of the equipment and techniques necessary to conduct the research at RHIC will ultimately improve nuclear equipment training for young researchers. Presently, nuclear techniques are used extensively in cancer radiotherapy and non-destructive analysis of steel, oil samples, ceramics and many other materials. As our understanding, equipment and techniques improve, we are able to better treat cancerous tumors and conduct material analysis.

The researchers’ work has appeared in the journals Nuclear Physics A and Physical Review Letters, as well as the Journal of Physics G: Nuclear and Particle Physics, and was presented at the annual meeting of the American Physical Society. Links to the most recent articles are available at:

For more information about this project, contact Dr. Declan Keane at 330-672-2959,, or Dr. Spiros Margetis at 330-672-9739,

Lisa Lambert | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>