Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first science ever with APEX

13.07.2006
This week, Astronomy & Astrophysics is publishing a series of 26 articles dedicated to the first science done with the APEX telescope. The APEX telescope is located at 5100 metres, at Chajnantor in the Atacama Desert (northern Chile). It will be dedicated to observing the sky of the Southern hemisphere at “sub-millimetre wavelengths”. It covers so-called “atmospheric windows” – the wavelengths at which the Earth’s atmosphere is partially transparent – between 0.1 mm and 1 mm. APEX will thus be observing the “cold universe”, which radiates at these wavelengths.

This “cold universe” includes the cold clouds where young stars are presently forming, and in which the temperature is only -260°C. We believe our solar system formed from one of these cold clouds. Astronomers studying these clouds are trying to understand what our solar system may have looked like just prior to and just after the birth of the Sun. Other applications for APEX will be the study of stars losing mass in the last stages of their evolution and of star-forming regions in different galaxies.

One scientific highlight in this issue is the discovery of a new interstellar molecule CF+, using both APEX and the IRAM 30-metre telescope near Granada in Spain. Prior to this discovery, there was only one fluorine-containing molecular species found in space so far. This molecule was found in the neutral gas region adjoining the Orion Nebula.

Another premiere is the detection – again in the Orion region – of radiation from carbon monoxide (CO) at a wavelength of 0.2 mm. This is the work of Martina Wiedner (University of Cologne, Germany) and her colleagues. These wavelengths are very difficult to investigate, both because the water vapour in the atmosphere attenuates the signal, and because the light-collecting system technology is less advanced at these wavelengths. The detection of CO at these wavelengths proves the efficiency of APEX, and later that of ALMA.

Finally, H2D+ radiation was detected from several clouds in the Southern hemisphere by two different teams: one lead by Jorma Harju (University of Helsinki, Finland), the other with Michiel Hogerheijde (Leiden Observatory, Netherlands) and collaborators. The H2D+ ion is interesting because it traces gas that is so cold (a few degrees above the absolute zero) that only the lightest molecular species, including H2D+, have not frozen out onto the surfaces of dust grains.

Along with the Japanese 10-m ASTE telescope, APEX is the first telescope dedicated to the sub-millimetre wavelengths in the Southern hemisphere. Until now, this sort of science was only carried out in the Northern hemisphere. APEX is indeed a forerunner to a large array of sub-millimetre telescopes (ALMA or Atacama Large Millimeter Array). ALMA will be built on the Chanjantor site, by a consortium from the United States, Europe, and Japan. ALMA will consist of 50 telescopes of the same dimensions (12-m diameter) as APEX, in an array which will extend over 10 km. It will be built on the Chajnantor site between 2003 and 2012. APEX itself was constructed by a consortium of the Max-Planck-Institut für Radioastronomie (Bonn, Germany), ESO, and the Onsala Space Observatory (Sweden). Apart from its relevance in the course of the ALMA project, APEX is interesting in its own right, as illustrated by the wealth of results published in this special issue.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org
http://www.edpsciences.org/articles/aa/abs/2006/29/contents/contents.html

More articles from Physics and Astronomy:

nachricht Molecules Brilliantly Illuminated
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>