Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first science ever with APEX

13.07.2006
This week, Astronomy & Astrophysics is publishing a series of 26 articles dedicated to the first science done with the APEX telescope. The APEX telescope is located at 5100 metres, at Chajnantor in the Atacama Desert (northern Chile). It will be dedicated to observing the sky of the Southern hemisphere at “sub-millimetre wavelengths”. It covers so-called “atmospheric windows” – the wavelengths at which the Earth’s atmosphere is partially transparent – between 0.1 mm and 1 mm. APEX will thus be observing the “cold universe”, which radiates at these wavelengths.

This “cold universe” includes the cold clouds where young stars are presently forming, and in which the temperature is only -260°C. We believe our solar system formed from one of these cold clouds. Astronomers studying these clouds are trying to understand what our solar system may have looked like just prior to and just after the birth of the Sun. Other applications for APEX will be the study of stars losing mass in the last stages of their evolution and of star-forming regions in different galaxies.

One scientific highlight in this issue is the discovery of a new interstellar molecule CF+, using both APEX and the IRAM 30-metre telescope near Granada in Spain. Prior to this discovery, there was only one fluorine-containing molecular species found in space so far. This molecule was found in the neutral gas region adjoining the Orion Nebula.

Another premiere is the detection – again in the Orion region – of radiation from carbon monoxide (CO) at a wavelength of 0.2 mm. This is the work of Martina Wiedner (University of Cologne, Germany) and her colleagues. These wavelengths are very difficult to investigate, both because the water vapour in the atmosphere attenuates the signal, and because the light-collecting system technology is less advanced at these wavelengths. The detection of CO at these wavelengths proves the efficiency of APEX, and later that of ALMA.

Finally, H2D+ radiation was detected from several clouds in the Southern hemisphere by two different teams: one lead by Jorma Harju (University of Helsinki, Finland), the other with Michiel Hogerheijde (Leiden Observatory, Netherlands) and collaborators. The H2D+ ion is interesting because it traces gas that is so cold (a few degrees above the absolute zero) that only the lightest molecular species, including H2D+, have not frozen out onto the surfaces of dust grains.

Along with the Japanese 10-m ASTE telescope, APEX is the first telescope dedicated to the sub-millimetre wavelengths in the Southern hemisphere. Until now, this sort of science was only carried out in the Northern hemisphere. APEX is indeed a forerunner to a large array of sub-millimetre telescopes (ALMA or Atacama Large Millimeter Array). ALMA will be built on the Chanjantor site, by a consortium from the United States, Europe, and Japan. ALMA will consist of 50 telescopes of the same dimensions (12-m diameter) as APEX, in an array which will extend over 10 km. It will be built on the Chajnantor site between 2003 and 2012. APEX itself was constructed by a consortium of the Max-Planck-Institut für Radioastronomie (Bonn, Germany), ESO, and the Onsala Space Observatory (Sweden). Apart from its relevance in the course of the ALMA project, APEX is interesting in its own right, as illustrated by the wealth of results published in this special issue.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org
http://www.edpsciences.org/articles/aa/abs/2006/29/contents/contents.html

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>