Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first science ever with APEX

13.07.2006
This week, Astronomy & Astrophysics is publishing a series of 26 articles dedicated to the first science done with the APEX telescope. The APEX telescope is located at 5100 metres, at Chajnantor in the Atacama Desert (northern Chile). It will be dedicated to observing the sky of the Southern hemisphere at “sub-millimetre wavelengths”. It covers so-called “atmospheric windows” – the wavelengths at which the Earth’s atmosphere is partially transparent – between 0.1 mm and 1 mm. APEX will thus be observing the “cold universe”, which radiates at these wavelengths.

This “cold universe” includes the cold clouds where young stars are presently forming, and in which the temperature is only -260°C. We believe our solar system formed from one of these cold clouds. Astronomers studying these clouds are trying to understand what our solar system may have looked like just prior to and just after the birth of the Sun. Other applications for APEX will be the study of stars losing mass in the last stages of their evolution and of star-forming regions in different galaxies.

One scientific highlight in this issue is the discovery of a new interstellar molecule CF+, using both APEX and the IRAM 30-metre telescope near Granada in Spain. Prior to this discovery, there was only one fluorine-containing molecular species found in space so far. This molecule was found in the neutral gas region adjoining the Orion Nebula.

Another premiere is the detection – again in the Orion region – of radiation from carbon monoxide (CO) at a wavelength of 0.2 mm. This is the work of Martina Wiedner (University of Cologne, Germany) and her colleagues. These wavelengths are very difficult to investigate, both because the water vapour in the atmosphere attenuates the signal, and because the light-collecting system technology is less advanced at these wavelengths. The detection of CO at these wavelengths proves the efficiency of APEX, and later that of ALMA.

Finally, H2D+ radiation was detected from several clouds in the Southern hemisphere by two different teams: one lead by Jorma Harju (University of Helsinki, Finland), the other with Michiel Hogerheijde (Leiden Observatory, Netherlands) and collaborators. The H2D+ ion is interesting because it traces gas that is so cold (a few degrees above the absolute zero) that only the lightest molecular species, including H2D+, have not frozen out onto the surfaces of dust grains.

Along with the Japanese 10-m ASTE telescope, APEX is the first telescope dedicated to the sub-millimetre wavelengths in the Southern hemisphere. Until now, this sort of science was only carried out in the Northern hemisphere. APEX is indeed a forerunner to a large array of sub-millimetre telescopes (ALMA or Atacama Large Millimeter Array). ALMA will be built on the Chanjantor site, by a consortium from the United States, Europe, and Japan. ALMA will consist of 50 telescopes of the same dimensions (12-m diameter) as APEX, in an array which will extend over 10 km. It will be built on the Chajnantor site between 2003 and 2012. APEX itself was constructed by a consortium of the Max-Planck-Institut für Radioastronomie (Bonn, Germany), ESO, and the Onsala Space Observatory (Sweden). Apart from its relevance in the course of the ALMA project, APEX is interesting in its own right, as illustrated by the wealth of results published in this special issue.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org
http://www.edpsciences.org/articles/aa/abs/2006/29/contents/contents.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>