Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suprising discovery may lead to new understanding of water quality

12.07.2006
Scientists at the U.S. Department of Energy's Argonne National Laboratory have discovered new ways that ions interact with mineral surfaces in water, opening a door to new knowledge on how contaminants travel in the environment. The insight, leads to a better understanding of the factors that determine water quality.

Water – colorless, odorless and tasteless – may seem simple, but its interaction with minerals can be difficult to study. Ions (ranging from nutrients such as calcium, to contaminants such as lead) are present in natural waters, but their transport is often limited by adsorption to mineral surfaces. The more scientists can understand about the interaction of minerals with water and ions, the more effectively they can control water quality in our environment, and Argonne's research in this area is making a leading contribution to the field.

Contrary to generally held scientific assumptions, the simple textbook description of how ions adsorb to mineral-water interfaces has been shown to not be universally true. Argonne Physicist Paul Fenter stated "Ions are known to carry a hydration shell in water. Previously, it was thought that ions either adsorb to a mineral surface with this shell intact as an outer-sphere ion, or remove part of this shell to directly bind to the mineral as an inner-sphere ion. We now know that this is not just a black and white difference, but have discovered new shades of gray by showing that outer-sphere and inner-sphere species of the same ion can co-exist."

This revelation was the outcome of a new element-specific method developed to understand the behavior of ions at the interface between minerals and liquids, like water. According to Argonne Chemist Changyong Park, "Conventional methods provided no direct sensitivity to observing this behavior. Outer-sphere species were almost invisible and extremely difficult to identify. There was just no way to see the co-existence of both species previously."

Using the Advanced Photon Source (APS) at Argonne, which provides the western hemisphere's most brilliant x-ray beams for research, the team was able to make this new discovery. These x-rays enabled scientists to pursue new knowledge about the structure and function of materials – and develop new methods for scientific study. Using the APS, the team was able to take advantage of the technique's spectroscopic sensitivity to identify the way specific ions interact at mineral-water interfaces and visualize the phenomena directly.

The findings built on earlier work on cation adsorption using traditional x-ray scattering techniques. The Argonne scientists, working together with researchers from the University of Illinois at Chicago Department of Earth and Environmental Sciences, previously discovered an anomaly in the way that ions adsorb. The team collaborated again with the new element-specific technique which led to this new discovery, central to understanding the behavior of ions at solid-liquid interfaces.

Water is the "universal solvent", dissolving more substances than any other liquid. This means that wherever water goes, either through the ground or through our bodies, it takes ions along with it. A general understanding of this behavior and the development of a new scientific method for studying this phenomenon may lead to better understanding of various other processes that take place at solid-liquid interfaces, including corrosion, erosion, catalysis, and even the biological behavior of cell membranes.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>