Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful radiation source to further cancer research

11.07.2006
Plans to construct Europe’s most intense terahertz (THz) radiation source to further development of cancer research are underway at the University of Liverpool.

Physicists will construct an ultra-high intensity THz beamline and attempt to destroy skin cancer cells specially grown in a new tissue culture facility. The experiments will help scientists understand how to use this technology in future treatments for the disease in humans.

The THz beamline, funded by the Northwest Regional Development Agency (NWDA) through its North West Science Fund, will be developed using the prototype Fourth Generation Light Source (4GLS) being constructed at CCLRC Daresbury Laboratory, which will be used to develop light sources used in X-ray technology, laser studies and radiation sources.

Physicist, Professor Peter Weightman, said: “The prototype 4GLS facility is based on an Energy Recovery Linear accelerator. The energy produced by firing electrons around this accelerator will partly be used to power the THz beamline, which will link up to a tissue culture facility developed with scientists at the University of Nottingham.

“The culture facility will be used to grow skin cancer cells and the THz radiation will target the source of the cancer. THz is absorbed by water and cancer cells retain water, so the THz radiation should be consumed by the cell and kill it off at the source.”

Terahertz radiation has also been used in the detection of concealed weapons, explosives and drugs as it has the ability to penetrate a variety of materials such as clothing, paper, cardboard, wood, masonry, plastics and ceramics. THz can also pick up on vibrations and rotations of molecules and has been useful in identifying molecules floating in space.

The team at Liverpool hope to develop these applications using the most powerful source of broad band terahertz available in Europe - a thousand times more powerful than current laboratory sources.

This will be the first time THz technology has been used on cancer cells and it will also be developed to characterise genetic material. THz has the capability of identifying mutations in DNA, which could help medics identify pharmaceutical therapies that will be compatible with individual patients’ DNA information.

Dr George Baxter, NWDA Director of Science and Innovation, said: “The NWDA is delighted to support this innovative project that will help develop new technology for the treatment of cancer. Investment in this project forms part of the NWDA’s commitment to build and sustain a knowledge based economy for England’s North West.”

The THz beamline will be fully operational in autumn 2007.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>