Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ion trap may lead to large quantum computers

10.07.2006
Physicists at the National Institute of Standards and Technology (NIST) have designed and built a novel electromagnetic trap for ions that could be easily mass produced to potentially make quantum computers large enough for practical use. The new trap, described in the June 30 issue of Physical Review Letters,* may help scientists surmount what is currently the most significant barrier to building a working quantum computer--scaling up components and processes that have been successfully demonstrated individually.

Quantum computers would exploit the unusual behavior of the smallest particles of matter and light. Their theoretical ability to perform vast numbers of operations simultaneously has the potential to solve certain problems, such as breaking data encryption codes or searching large databases, far faster than conventional computers. Ions (electrically charged atoms) are promising candidates for use as quantum bits (qubits) in quantum computers. The NIST team, one of 18 research groups worldwide experimenting with ion qubits, previously has demonstrated at a rudimentary level all the basic building blocks for a quantum computer, including key processes such as error correction, and also has proposed a large-scale architecture.


False-color images of 1, 2, 3, 6, and 12 magnesium ions loaded into NIST's new planar ion trap. Red indicates areas of highest fluorescence, or the centers of the ions. As more ions are loaded in the trap, they squeeze closer together, until the 12-ion string falls into a zig-zag formation. Credit: Signe Seidelin and John Chiaverini/NIST


NIST's novel planar ion trap was designed to be easily mass produced, potentially enabling quantum computers large enough for practical use. The trap uses gold electrodes to confine magnesium ions 40 micrometers above the plane of the electrodes. Laser beams are used to create ions from the metal vapor and then cool them. Credit: Signe Seidelin and John Chiaverini/NIST

The new NIST trap is the first functional ion trap in which all electrodes are arranged in one horizontal layer, a "chip-like" geometry that is much easier to manufacture than previous ion traps with two or three layers of electrodes. The new trap, which has gold electrodes that confine ions about 40 micrometers above the electrodes, was constructed using standard microfabrication techniques.

NIST scientists report that their single-layer device can trap a dozen magnesium ions without generating too much heat from electrode voltage fluctuations--also an important factor, because heating has limited the prospects for previous small traps. Microscale traps are desirable because the smaller the trap, the faster the future computer. Work is continuing at NIST and at collaborating industrial and federal labs to build single-layer traps with more complex structures in which perhaps 10 to 15 ions eventually could be manipulated with lasers to carry out logic operations.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/quantum/quantum_info_index.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>