Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full 3-D image of nanocrystals’ interior created by shining X-rays through them

06.07.2006
A vital step towards the ultimate goal of being able to take ‘photographs’ of individual molecules in action has been achieved by an international team led by UCL (University College London) researchers at the London Centre for Nanotechnology.

They report in the journal Nature on a novel method of obtaining a full 3-D image of the interior of nanocrystals. Using a process known as coherent X-ray diffraction imaging, they were able to build a picture of the inside of nanocrystals by measuring and inverting diffraction patterns.

Ultimately, the technique will help in the development of X-ray free-electron lasers, which will allow single-molecule imaging. It will also allow researchers to more accurately assess the defects in any given material which gives them specific properties.

Professor Ian Robinson, of the UCL Department of Physics & Astronomy and the London Centre for Nanotechnology, who led the study, says: “This new imaging method shows that the interior structure of atomic displacements within single nanocrystals can be obtained by direct inversion of the diffraction pattern. We hope one day this will be applied to determine the structure of single protein molecules placed in the femtosecond beam of a free-electron laser.

“Coherent X-ray diffraction imaging emerged from the realisation that over-sampled diffraction patterns can be inverted to obtain real space images. It is an attractive alternative to electron microscopy because of the better penetration of the electromagnetic waves in materials of interest, which are often less damaging to the sample than electrons.”

The inversion of a diffraction pattern back to an image has already been proven to yield a unique ‘photograph’ in two or higher dimensions. However, previously researchers have encountered difficulties with 3-D structures with deformations as these interfere with the symmetry of the pattern. To overcome this problem, the UCL team used a lead nanocrystal that was crystallised in an ultrahigh vacuum. It showed that asymmetries in the diffraction pattern can be mapped to deformities, providing a detailed 3-D map of the location of them in the crystal.

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>