Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-leading microscope brings atoms into focus at Royal Society

30.06.2006
The UK’s most powerful microscope will be showing how its ability to image individual atoms is leading development of new electronic materials and understanding disease to schools and the public in the Royal Society’s summer science exhibition in London from 3 – 6 July.

The SuperSTEM microscope at Daresbury Laboratory has been developed by scientists from the Universities of Liverpool and Cambridge. It is so powerful that it can make atoms visible. Atoms are the smallest indivisible part of matter, so small that a billion of them can fit into the width of a full stop.

SuperSTEM – the Scanning Transmission Electron Microscope - uses high-energy electrons to image atoms. It uses electrons as their wavelength is about 100 times smaller than the size of an atom; light has a wavelength about 1000 times larger than an atom which means the smallest details that can be seen with light is larger than an atom. Unfortunately, until recently defects in electron lenses limited their resolving power so that they were unable to image atoms. The challenge for scientists was to develop and install a corrector to overcome the defect known as spherical aberration, a defect common to all lenses.

“It’s similar to astigmatism in human eyes, where your eye isn’t perfectly round and this prevents you focusing properly,” explained Professor Alan Craven from the University of Glasgow, who is leading the SuperSTEM exhibition. “But in 1997, a UK group from Cambridge University managed to design and build something to correct this and bring everything into clear focus, creating the potential for the world's most powerful electron microscope. You say that what they did was make glasses for the electron microscope”.

“SuperSTEM is one of only four such microscopes in the world and its key advantage is its incredible stability. If the system is unstable, the image changes. Our system is so stable that any sample in the microscope would move no more than half a millimetre in 100 years. That's 2000 times slower than continental drift”, he added.

The major breakthrough at Daresbury is imaging atoms inside structures, so that the way that atoms interact at the interface between different materials can be seen. Imaging how atoms interact at interfaces is key to the development of the next generation of computer chips.

“Computing power continues to increase as transistor size decreases, but we are now reaching our technical limits. The key insulating layer of silica in these transistors has just five silicon atoms across it”, explained Alan. “Any thinner and the current leaking across this insulating layer will increase rapidly because of an effect known as quantum mechanical tunnelling, making the transistor unusable. Alternatives to silicon are currently being sought. With SuperSTEM we can see how the atoms in these alternatives behave at interfaces which determines their suitability as the next generation insulators”, he explained.

SuperSTEM also has applications in medicine and is being used to aid understanding of diseases such as haemochromatosis, where the liver becomes overloaded with iron. The tiny nanocrystals that hold iron within the body are being examined as their structure will shed light on how iron is transported, stored and released in the body.

Tony Buckley | alfa
Further information:
http://www.superstem.dl.ac.uk/
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020
21.11.2017 | Laser Zentrum Hannover e.V.

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>