Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-leading microscope brings atoms into focus at Royal Society

30.06.2006
The UK’s most powerful microscope will be showing how its ability to image individual atoms is leading development of new electronic materials and understanding disease to schools and the public in the Royal Society’s summer science exhibition in London from 3 – 6 July.

The SuperSTEM microscope at Daresbury Laboratory has been developed by scientists from the Universities of Liverpool and Cambridge. It is so powerful that it can make atoms visible. Atoms are the smallest indivisible part of matter, so small that a billion of them can fit into the width of a full stop.

SuperSTEM – the Scanning Transmission Electron Microscope - uses high-energy electrons to image atoms. It uses electrons as their wavelength is about 100 times smaller than the size of an atom; light has a wavelength about 1000 times larger than an atom which means the smallest details that can be seen with light is larger than an atom. Unfortunately, until recently defects in electron lenses limited their resolving power so that they were unable to image atoms. The challenge for scientists was to develop and install a corrector to overcome the defect known as spherical aberration, a defect common to all lenses.

“It’s similar to astigmatism in human eyes, where your eye isn’t perfectly round and this prevents you focusing properly,” explained Professor Alan Craven from the University of Glasgow, who is leading the SuperSTEM exhibition. “But in 1997, a UK group from Cambridge University managed to design and build something to correct this and bring everything into clear focus, creating the potential for the world's most powerful electron microscope. You say that what they did was make glasses for the electron microscope”.

“SuperSTEM is one of only four such microscopes in the world and its key advantage is its incredible stability. If the system is unstable, the image changes. Our system is so stable that any sample in the microscope would move no more than half a millimetre in 100 years. That's 2000 times slower than continental drift”, he added.

The major breakthrough at Daresbury is imaging atoms inside structures, so that the way that atoms interact at the interface between different materials can be seen. Imaging how atoms interact at interfaces is key to the development of the next generation of computer chips.

“Computing power continues to increase as transistor size decreases, but we are now reaching our technical limits. The key insulating layer of silica in these transistors has just five silicon atoms across it”, explained Alan. “Any thinner and the current leaking across this insulating layer will increase rapidly because of an effect known as quantum mechanical tunnelling, making the transistor unusable. Alternatives to silicon are currently being sought. With SuperSTEM we can see how the atoms in these alternatives behave at interfaces which determines their suitability as the next generation insulators”, he explained.

SuperSTEM also has applications in medicine and is being used to aid understanding of diseases such as haemochromatosis, where the liver becomes overloaded with iron. The tiny nanocrystals that hold iron within the body are being examined as their structure will shed light on how iron is transported, stored and released in the body.

Tony Buckley | alfa
Further information:
http://www.superstem.dl.ac.uk/
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>