Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radioactive scorpion venom for fighting cancer

28.06.2006
Health physicist helps establish safety, legality of promising technique

Health physicists are establishing safe procedures for a promising experimental brain-cancer therapy which uses a radioactive version of a protein found in scorpion venom. For many, this will conjure images of Spiderman's nemesis, the Scorpion. The purpose of this work is not science fiction, but rather to help to develop a promising new therapy for brain cancer. The venom of the yellow Israeli scorpion preferentially attaches to the cells of a type of essentially incurable brain cancers known as gliomas.

Responding to this urgent problem, scientists at the Transmolecular Corporation in Cambridge, Massachusetts created a radioactive version of this scorpion venom. Called TM-601, it contains an artificial version of the venom protein, attached to a radioactive substance called iodine-131 (I-131). When it enters the bloodstream, the compound attaches to the glioma cells, then the I-131 releases radiation that kills the cell.

This compound has enabled an experimental treatment for high-grade gliomas, found in 17,000 people in the US every year and usually causing death in the first year of diagnosis. Patients would simply be injected with the compound in an outpatient procedure, without needing chemotherapy or traditional radiotherapy. The first, early human trials of the venom therapy showed promising signs for treating the tumor and prolonging survival rates for patients.

At the Health Physics Society meeting this week in Providence, Rhode Island, Alan M. Jackson of the Henry Ford Health System in Detroit will report that he and his colleagues recently established safe procedures for the therapy, currently in the second sequence of phase-II human trials, which involve higher doses of radiation than the earliest trials.

"The health physicist has the duty to ensure to ensure that these therapies are conducted both legally and safely," Jackson says. "Obviously, a key objective is to bring these patients home and to ensure that their loved ones and the environment are properly protected."

In the trials, one group of patients received the therapy three times over three weeks, while the other group received the therapy 6 times over 6 weeks. Each group received the same dose of radioactive iodine per week, 40 millicuries (mCi). According to Jackson, this is not tremendously high compared to a thyroid cancer treatment, in which patients receive up to 200 mCi in a single treatment.

As Jackson discovered, the TM-601 that does not bind to cells in the body is rapidly excreted in the urine. "Other tissues will receive some dose," he says, "but the vast majority of the dose is delivered to the cancer cells." To prevent the radioactive compound from being absorbed by the thyroid, which has a voracious appetite for iodine, the patients were given large amounts of non-radioactive iodine prior to the therapy to block the thyroid uptake of I-131.

When the patient returns home several hours after the procedure, there are radiation doses to any family members at home due to the presence of radiation in the patient's body. Such radiation exposures to family members, Jackson found, are low and comparable to those from a family member receiving standard thyroid cancer therapy.

Jackson is encouraged by the safety of this procedure and its potential to help patients with brain gliomas. A recent study of the earlier phase II trials showed that patients receiving up to 40 mCi of weekly dose did not show evidence of any adverse reactions attributable to the radiation. The second-sequence phase II trial at Henry Ford involves 3 patients, with a total of 54 patients across the US currently in investigational trials for the therapy.

Kelly Classic | EurekAlert!
Further information:
http://www.hps.org

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>